40 research outputs found

    RS Ophiuchi: Thermonuclear Explosion or Disc Instability?

    Full text link
    Sokoloski et al (2008) have recently reported evidence that the recurrent nova RS Ophiuchi produced a pair of highly collimated radio jets within days of its 2006 outburst. This suggests that an accretion disc must be present during the outburst. However in the standard picture of recurrent novae as thermonuclear events, any such disc must be expelled from the white dwarf vicinity, as the nuclear energy yield greatly exceeds its binding energy. We suggest instead that the outbursts of RS Oph are thermal--viscous instabilities in a disc irradiated by the central accreting white dwarf. The distinctive feature of RS Oph is the very large size of its accretion disc. Given this, it fits naturally into a consistent picture of systems with unstable accretion discs. This picture explains the presence and speed of the jets, the brightness and duration of the outburst, and its rise time and linear decay, as well as the faintness of the quiescence. By contrast, the hitherto standard picture of recurrent thermonuclear explosions has a number of severe difficulties. These include the presence of jets, the faintness of quiescence, and the fact the the accretion disc must be unstable unless it is far smaller than any reasonable estimate.Comment: MNRAS, in pres

    Phase II double-blind placebo-controlled randomized study of armodafinil for brain radiation-induced fatigue

    Get PDF
    BACKGROUND: Common acute-term side effects of brain radiotherapy (RT) include fatigue, drowsiness, decreased physical functioning, and decreased quality of life (QOL). We hypothesized that armodafinil (a wakefulness-promoting drug known to reduce fatigue and increase cognitive function in breast cancer patients receiving chemotherapy) would result in reduced fatigue and sleepiness for patients receiving brain RT. METHODS: A phase II, multi-institutional, placebo-controlled randomized trial assessed feasibility of armodafinil 150 mg/day in participants receiving brain RT, from whom we obtained estimates of variability for fatigue, sleepiness, QOL, cognitive function, and treatment effect. RESULTS: From September 20, 2010, to October 20, 2012, 54 participants enrolled with 80% retention and 94% self-reported compliance. There were no grade 4-5 toxicities, and the incidence of grade 2-3 toxicities was similar between treatment arms, the most common of which were anxiety and nausea (15%), headaches (19%), and insomnia (20%). There were no statistically significant differences in end-RT or 4 week post-RT outcomes between armodafinil and placebo in any outcomes (Functional Assessment of Chronic Illness Therapy [FACIT]-Fatigue, Brief Fatigue Inventory, Epworth Sleepiness Scale, FACT-Brain, and FACIT-cognitive function). However, in participants with more baseline fatigue, those treated with armodafinil did better than those who received the placebo on the end-RT assessments for several outcomes. CONCLUSION: Armodafinil 150 mg/day was well tolerated in primary brain tumor patients undergoing RT with good compliance. While there was no overall significant effect on fatigue, those with greater baseline fatigue experienced improved QOL and reduced fatigue when using armodafinil. These data suggest that a prospective, phase III randomized trial is warranted for patients with greater baseline fatigue

    The Morphology of the Expanding Ejecta of V2491 Cygni (2008 N.2)

    Full text link
    Determining the evolution of the ejecta morphology of novae provides valuable information on the shaping mechanisms in operation at early stages of the nova outburst. Understanding such mechanisms has implications for studies of shaping for example in proto-Planetary Nebulae. Here we perform morpho-kinematical studies of V2491 Cyg using spectral data to determine the likely structure of the ejecta and its relationship to the central system and shaping mechanisms. We use Shape to model different morphologies and retrieve their spectra. These synthetic spectra are compared with observed spectra to determine the most likely morphology giving rise to them, including system inclination and expansion velocity of the nova ejecta. We find the best fit remnant morphology to be that of polar blobs and an equatorial ring with an implied inclination of 80−12+3^{+3}_{-12} degrees and an maximum expansion velocity of the polar blobs of 3100−100+200^{+200}_{-100} km/s and for the equatorial ring 2700−100+200^{+200}_{-100} km/s. This inclination would suggest that we should observe eclipses which will enable us to determine more precisely important parameters of the central binary. We also note that the amplitude of the outburst is more akin to the found in recurrent nova systems.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Genomic predictors of patterns of progression in glioblastoma and possible influences on radiation field design

    Get PDF
    We present a retrospective investigation of the role of genomics in the prediction of central versus marginal disease progression patterns for glioblastoma (GBM). Between August 2000 and May 2010, 41 patients with GBM and gene expression and methylation data available were treated with radiotherapy with or without concurrent temozolomide. Location of disease progression was categorized as within the high dose (60 Gy) or low dose (46 Gy) volume. Samples were grouped into previously described TCGA genomic groupings: Mesenchymal (m), classical (c), proneural (pn), and neural (n); and were also classified by MGMT-Methylation status and G-Cimp methylation phenotype. Genomic groupings and methylation status were investigated as a possible predictor of disease progression in the high dose region, progression in the low dose region, and time to progression. Based on TCGA category there was no difference in OS (p = 0.26), 60 Gy progression (PN: 71 %, N: 60 %, M: 89 %, C: 83 %, p = 0.19), 46 Gy progression (PN: 57 %, N: 40 %, M: 61 %, C: 50 %, p = 0.8) or time to progression (PN: 9 months, N:15 months, M: 9 months, C: 7 months, p = 0.58). MGMT methylation predicted for improved OS (median 25 vs. 13 months, p = 0.01), improved DFS (median 13 vs. 8 months, p = 0.007) and decreased 60 Gy (p = 0.003) and 46 Gy (p = 0.006) progression. There was a cohort of MGMT methylated patients with late marginal disease progression (4/22 patients, 18 %). TCGA groups demonstrated no difference in survival or progression patterns. MGMT methylation predicted for a statistically significant decrease in in-field and marginal disease progression. There was a cohort of MGMT methylated patients with late marginal progression. Validations of these findings would have implications that could affect radiation field size

    Barriers to radiotherapy access at the University College Hospital in Ibadan, Nigeria

    Full text link
    Introduction: Nigeria has the biggest gap between radiotherapy availability and need, with one machine per 19.4 million people, compared to one machine per 250,000 people in high-income countries. This study aims to identify its patient-level barriers to radiotherapy access. Material and methods: This was a cross sectional study consisting of patient questionnaires (n = 50) conducted in January 2016 to assess patient demographics, types of cancers seen, barriers to receiving radiotherapy, health beliefs and practices, and factors leading to treatment delay. Results: Eighty percent of patients could not afford radiotherapy without financial assistance and only 6% of the patients had federal insurance, which did not cover radiotherapy services. Of the patients who had completed radiotherapy treatment, 91.3% had experienced treatment delay or often cancellation due to healthcare worker strike, power failure, machine breakdown, or prolonged wait time. The timeliness of a patient’s radiotherapy care correlated with their employment status and distance from radiotherapy center (p < 0.05). Conclusions: Barriers to care at a radiotherapy center in a low- and middle-income country (LMIC) have previously not been well characterized. These findings can be used to inform efforts to expand the availability of radiotherapy and improve current treatment capacity in Nigeria and in other LMICs

    The pervasive crisis of diminishing radiation therapy access for vulnerable populations in the United States, part 1: African-American patients

    Full text link
    Introduction: African Americans experience the highest burden of cancer incidence and mortality in the United States and have been persistently less likely to receive interventional care, even when such care has been proven superior to conservative management by randomized controlled trials. The presence of disparities in access to radiation therapy (RT) for African American cancer patients has rarely been examined in an expansive fashion. Methods and materials: An extensive literature search was performed using the PubMed database to examine studies investigating disparities in RT access for African Americans. Results: A total of 55 studies were found, spanning 11 organ systems. Disparities in access to RT for African Americans were most prominently study in cancers of the breast (23 studies), prostate (7 studies), gynecologic system (5 studies), and hematologic system (5 studies). Disparities in RT access for African Americans were prevalent regardless of organ system studied and often occurred independently of socioeconomic status. Fifty of 55 studies (91%) involved analysis of a population-based database such as Surveillance, Epidemiology and End Result (SEER; 26 studies), SEER-Medicare (5 studies), National Cancer Database (3 studies), or a state tumor registry (13 studies). Conclusions: African Americans in the United States have diminished access to RT compared with Caucasian patients, independent of but often in concert with low socioeconomic status. These findings underscore the importance of finding systemic and systematic solutions to address these inequalities to reduce the barriers that patient race provides in receipt of optimal cancer care
    corecore