14 research outputs found

    The interrelation between temperature regimes and fish size in juvenile Atlantic cod (Gadus morhua): effects on growth and feed conversion efficiency

    Get PDF
    The present paper describes the growth properties of juvenile Atlantic cod (Gadus morhua) reared at 7, 10, 13 and 16 °C, and a group reared under “temperature steps” i.e. with temperature reduced successively from 16 to 13 and 10 °C. Growth rate and feed conversion efficiency of juvenile Atlantic cod were significantly influenced by the interaction of temperature and fish size. Overall growth was highest in the 13 °C and the T-step groups but for different reasons, as the fish at 13 °C had 10% higher overall feeding intake compared to the T-step group, whereas the T-step had 8% higher feeding efficiency. After termination of the laboratory study the fish were reared in sea pens at ambient conditions for 17 months. The groups performed differently when reared at ambient conditions in the sea as the T-step group was 11.6, 11.5, 5.3 and 7.5% larger than 7, 10, 13 and 16 °C, respectively in June 2005. Optimal temperature for growth and feed conversion efficiency decreased with size, indicating an ontogenetic reduction in optimum temperature for growth with increasing size. The results suggest an optimum temperature for growth of juvenile Atlantic cod in the size range 5–50 g dropping from 14.7 °C for 5–10 g juvenile to 12.4 °C for 40–50 g juvenile. Moreover, a broader parabolic regression curve between growth, feed conversion efficiency and temperature as size increases, indicate increased temperature tolerance with size. The study confirms that juvenile cod exhibits ontogenetic variation in temperature optimum, which might partly explain different spatial distribution of juvenile and adult cod in ocean waters. Our study also indicates a physiological mechanism that might be linked to cod migrations as cod may maximize their feeding efficiency by active thermoregulation

    Monsoonally influenced circulation around coral reef islands and seasonal dynamics of reef island shorelines

    Get PDF
    Synchronous measurements of reef flat waves and nearshore currents were made around the perimeter of three coral reef islands in the central Maldives. Nearshore current velocities were shown to be tidally modulated in most instances with maximum velocities associated with lower tidal stages. Peak currents were consistently observed on the windward and lateral flanks of island shorelines (0.3–0.4 ms− 1). The relatively low elevation of reef surfaces and medium to low energy incident wave energy (Hs ~ 0.2–0.3 m) accounts for low tidal stage peaks in velocity as this corresponds to the period when wave setup-induced current processes are maximised. Significantly, all nearshore currents were unidirectional and alongshore. The generation of unidirectional alongshore flow patterns results from island configuration which deflects flow and variations in reef geometry that control: spatial variations in wave-setup around the reef platform edge and at the island shoreline, which can drive alongshore currents; the presence of a nearshore moat that channelizes flow in the nearshore: and variations in reef geometry where topographic low points act as preferential drainage points. Results show that changes in monsoon conditions, that modulate wind and wave patterns from the west to northeast, can force substantial changes in reef platform and nearshore current flows, but that the degree of change is dependent on reef platform shape and position in the atoll. The circular study island was found to exhibit a near-complete reversal in unidirectional flow from northeast flow in the westerly monsoon to southwest flow in the northeast monsoon. However, the elongate and triangular shaped reef platforms exhibited more localised changes in flow patterns. Significantly, those shorelines that exhibit the greatest changes in shoreline currents correspond to the sections of coast that exhibit the largest morphological adjustments between seasons. Results provide significant insights for the morphodynamics of reef platform islands. In particular, the nearshore process regime is dominated by alongshore processes. Furthermore, reef platform shape and the magnitude of change in direction of wave approach to reef platforms provide critical indicators of the morphodynamic behaviour of reef platform islands

    Tsunami as agents of geomorphic change in mid-ocean reef islands

    No full text
    Low-lying atoll islands appear highly vulnerable to the effects of climate change and extreme natural events. Potentially disastrous effects of future sea-level rise have been inferred in many studies, and the actual impacts of tropical storms on island destruction and formation have been well documented. In contrast, the role of tsunami in the geomorphic development of atoll islands has not been investigated. The Sumatran earthquake of 26 December 2004 generated a tsunami that reached the Maldives 2500 km away, with waves up to 2.5 m high. Observations on the geomorphic changes resulting from the tsunami are detailed here, based on pre-and post-tsunami profile measurements of island, beach and reef topography, and GPS surveys of the planform shape of islands and beaches of 11 uninhabited islands in South Maalhosmadulu atoll, Maldives. Erosional and depositional impacts were observed on all islands and these have been quantified. In general the changes were of a minor nature with a maximum reduction in island area of 9% and average of 3.75%. Rather, the tsunami accentuated predictable seasonal oscillations in shoreline change, including localised erosion reflected in fresh scarps and seepage gullies. Depositional features in the form of sand sheets and sand lobes emplaced on the vegetated island surfaces provide clear evidence that the tsunami waves washed over parts of all the islands. Both erosional scarps and overwash deposits were concentrated at the tsunami-exposed eastern sides of the islands. Impacts on leeward shores were primarily accretionary, in the form of spit and cuspate foreland extension. Whereas the nature and magnitude of intra-and inter-island impacts was variable, an east to west decline in aggregate effects was noted. Detailed consideration of the morphodynamic interaction between the tsunami waves and island morphology, show that this cross-atoll gradient resulted not just from the reduction in tsunami energy as it passed through the atoll, but also from variations in elevation of the encircling island ridge, and the quantity and distribution of sediment in the antecedent beach. A conceptual model identifying the sequence of changes to individual islands supports the observational data and the pattern of geomorphic changes resulting from the tsunami. This model leads to consideration of the longer-term impacts of the tsunami on the future stability of islands. Four scenarios are presented, each of which has a different island-beach sediment budget, and different relaxation time to achieve dynamic equilibrium
    corecore