4,453 research outputs found

    Uni-directional polymerization leading to homochirality in the RNA world

    Full text link
    The differences between uni-directional and bi-directional polymerization are considered. The uni-directional case is discussed in the framework of the RNA world. Similar to earlier models of this type, where polymerization was assumed to proceed in a bi-directional fashion (presumed to be relevant to peptide nucleic acids), left-handed and right-handed monomers are produced via an autocatalysis from an achiral substrate. The details of the bifurcation from a racemic solution to a homochiral state of either handedness is shown to be remarkably independent of whether the polymerization in uni-directional or bi-directional. Slightly larger differences are seen when dissociation is allowed and the dissociation fragments are being recycled into the achiral substrate.Comment: 9 pages, 4 figures, submitted to Astrobiolog

    Turbulent transport in hydromagnetic flows

    Full text link
    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent mixing and beyon

    Mean-field and direct numerical simulations of magnetic flux concentrations from vertical field

    Full text link
    Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding the growth rate of this large-scale instability, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached. This results in magnetic spots that are reminiscent of sunspots. Here we want to find out under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. We use a combination of MFS, DNS, and implicit large-eddy simulations to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. We confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using turbulence simulations, we find that magnetic flux concentrations occur for different values of the Mach number between 0.1 and 0.7. DNS and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated.Comment: 16 pages, 22 figures, Astron. Astrophys., in pres

    Inertial range scaling in numerical turbulence with hyperviscosity

    Full text link
    Numerical turbulence with hyperviscosity is studied and compared with direct simulations using ordinary viscosity and data from wind tunnel experiments. It is shown that the inertial range scaling is similar in all three cases. Furthermore, the bottleneck effect is approximately equally broad (about one order of magnitude) in these cases and only its height is increased in the hyperviscous case--presumably as a consequence of the steeper decent of the spectrum in the hyperviscous subrange. The mean normalized dissipation rate is found to be in agreement with both wind tunnel experiments and direct simulations. The structure function exponents agree with the She-Leveque model. Decaying turbulence with hyperviscosity still gives the usual t^{-1.25} decay law for the kinetic energy, and also the bottleneck effect is still present and about equally strong.Comment: Final version (7 pages

    Chandrasekhar-Kendall functions in astrophysical dynamos

    Full text link
    Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary Conference, to be published in PRAMANA - Journal of Physic

    Is nonhelical hydromagnetic turbulence peaked at small scales?

    Full text link
    Nonhelical hydromagnetic turbulence without an imposed magnetic field is considered in the case where the magnetic Prandtl number is unity. The magnetic field is entirely due to dynamo action. The magnetic energy spectrum peaks at a wavenumber of about 5 times the minimum wavenumber in the domain, and not at the resistive scale, as has previously been argued. Throughout the inertial range the spectral magnetic energy exceeds the kinetic energy by a factor of about 2.5, and both spectra are approximately parallel. At first glance, the total energy spectrum seems to be close to k^{-3/2}, but there is a strong bottleneck effect and it is suggested that the asymptotic spectrum is k^{-5/3}. This is supported by the value of the second order structure function exponent that is found to be \zeta_2=0.70, suggesting a k^{-1.70} spectrum.Comment: 6 pages, 6 figure
    corecore