419 research outputs found

    Revisiting spin alignment of heavy mesons in its inclusive production

    Get PDF
    In the heavy quark limit inclusive production rate of a heavy meson can be factorized, in which the nonperturbative effect related to the heavy meson can be characterized by matrix elements defined in the heavy quark effective theory. Using this factorization, predictions for the full spin density matrix of a spin-1 and spin-2 meson can be obtained and they are characterized only by one coefficient representing the nonperturbative effect. Predictions for spin-1 heavy meson are compared with experiment performed at e+ee^+e^- colliders in the energy range from s=10.5\sqrt{s}=10.5GeV to s=91\sqrt{s}=91GeV, a complete agreement is found for DD^*- and BB^*-meson. For DD^{**} meson, our prediction suffers a large correction, as indicated by experimental data. There exists another approach by taking heavy mesons as bound systems, in which the total angular momentum of the light degrees of freedom is 1/2 and 3/2 for spin-1 and spin-2 meson respectively, then the diagonal parts of spin density matrices can be obtained. However, there are distinct differences in the predictions from the two approaches and they are discussed in detail.Comment: 14 pages with one figur

    Identification of a common HLA-DP4-restricted T-cell epitope in the conserved region of the respiratory syncytial virus G protein

    Get PDF
    The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4(+)-T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n = 2) or almost identical (n = 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n = 41) or mild (n = 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ+X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1(x1,p2)×hˉ1(x2,k2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T(x,p2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure

    Magnetic fields in the early universe in the string approach to MHD

    Get PDF
    There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field generated during the radiation-dominated era in the early Universe. Causality dictates that the field lines form a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnection, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted form of the power spectrum, and discuss insights gained from the string approximation, in particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure

    Large-space shell-model calculations for light nuclei

    Full text link
    An effective two-body interaction is constructed from a new Reid-like NNNN potential for a large no-core space consisting of six major shells and is used to generate the shell-model properties for light nuclei from AA=2 to 6. (For practical reasons, the model space is partially truncated for AA=6.) Binding energies and other physical observables are calculated and compare favorably with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MWBme,T,μ,pM_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong BT2B\gg T^{2} and weakly-strong BT2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference

    Measurement of the D+ and Ds+ decays into K+K-K+

    Full text link
    We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure

    Measurement of the Ratio of the Vector to Pseudoscalar Charm Semileptonic Decay Rate \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)

    Full text link
    Using a high statistics sample of photo-produced charm particles from the FOCUS experiment at Fermilab, we report on the measurement of the ratio of semileptonic rates \Gamma(D+ > ANTI-K pi mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.625 +/- 0.045 +/- 0.034. Allowing for the K pi S-wave interference measured previously by FOCUS, we extract the vector to pseudoscalar ratio \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.594 +/- 0.043 +/- 0.033 and the ratio \Gamma(D+ > ANTI-K0 mu+ nu)/\Gamma(D+ > K- pi+ pi+)= 1.019 +/- 0.076 +/- 0.065. Our results show a lower ratio for \Gamma(D > K* \ell nu})/\Gamma(D > K \ell nu) than has been reported recently and indicate the current world average branching fractions for the decays D+ >ANTI-K0(mu+, e+) nu are low. Using the PDG world average for B(D+ > K- pi+ pi+) we extract B(D+ > ANIT-K0 mu+ nu)=(9.27 +/- 0.69 +/- 0.59 +/- 0.61)%.Comment: 15 pages, 1 figur

    SU(3) Breaking and D0-D0bar Mixing

    Full text link
    The main challenge in the Standard Model calculation of the mass and width difference in the D0-D0bar system is to estimate the size of SU(3) breaking effects. We prove that D meson mixing occurs in the Standard Model only at second order in SU(3) violation. We consider the possibility that phase space effects may be the dominant source of SU(3) breaking. We find that y=(Delta Gamma)/(2Gamma) of the order of one percent is natural in the Standard Model, potentially reducing the sensitivity to new physics of measurements of D meson mixing.Comment: 18 pages; minor corrections, version to appear in Phys. Rev.
    corecore