7,799 research outputs found
Geometrical Considerations for the Design of Liquid-phase Biochemical Sensors Using a Cantilever\u27s Fundamental In-plane Mode
The influence of the beam geometry on the quality factor and resonance frequency of resonant silicon cantilever beams vibrating in their fundamental in-plane flexural mode in water has been investigated. Compared to cantilevers vibrating in their first out-of-plane flexural mode, utilizing the in-plane mode results in reduced damping and reduced mass loading by the surrounding fluid. Quality factors as high as 86 have been measured in water for cantilevers with a 20 μm thick silicon layer. Based on the experimental data, design guidelines are established for beam dimensions that ensure maximal Q-factors and minimal mass loading by the surrounding fluid, thus improving the limit-of-detection of mass-sensitive biochemical sensors. Elementary theory is also presented to help explain the observed trends. Additional discussion focuses on the tradeoffs that exist in designing liquid-phase biochemical sensors using in-plane cantilevers
Spontaneous soliton formation and modulational instability in Bose-Einstein condensates
The dynamics of an elongated attractive Bose-Einstein condensate in an
axisymmetric harmonic trap is studied. It is shown that density fringes caused
by self-interference of the condensate order parameter seed modulational
instability. The latter has novel features in contradistinction to the usual
homogeneous case known from nonlinear fiber optics. Several open questions in
the interpretation of the recent creation of the first matter-wave bright
soliton train [Strecker {\it et al.} Nature {\bf 417} 150 (2002)] are
addressed. It is shown that primary transverse collapse, followed by secondary
collapse induced by soliton--soliton interactions, produce bursts of hot atoms
at different time scales.Comment: 4 pages, 3 figures. Phys. Rev. Lett. in pres
A pulsed atomic soliton laser
It is shown that simultaneously changing the scattering length of an
elongated, harmonically trapped Bose-Einstein condensate from positive to
negative and inverting the axial portion of the trap, so that it becomes
expulsive, results in a train of self-coherent solitonic pulses. Each pulse is
itself a non-dispersive attractive Bose-Einstein condensate that rapidly
self-cools. The axial trap functions as a waveguide. The solitons can be made
robustly stable with the right choice of trap geometry, number of atoms, and
interaction strength. Theoretical and numerical evidence suggests that such a
pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure
Adjustment of interaural-time-difference analysis to sound level
To localize low-frequency sound sources in azimuth, the binaural system compares the timing of sound waves at the two ears with microsecond precision. A similarly high precision is also seen in the binaural processing of the envelopes of high-frequency complex sounds. Both for low- and high-frequency sounds, interaural time difference (ITD) acuity is to a large extent independent of sound level. The mechanisms underlying this level-invariant extraction of ITDs by the binaural system are, however, only poorly understood. We use high-frequency pip trains with asymmetric and dichotic pip envelopes in a combined psychophysical, electrophysiological, and modeling approach. Although the dichotic envelopes cannot be physically matched in terms of ITD, the match produced perceptually by humans is very reliable, and it depends systematically on the overall sound level. These data are reflected in neural responses from the gerbil lateral superior olive and lateral lemniscus. The results are predicted in an existing temporal-integration model extended with a level-dependent threshold criterion. These data provide a very sensitive quantification of how the peripheral temporal code is conditioned for binaural analysis
Star Formation in the Extreme Outer Galaxy: Digel Cloud 2 Clusters
As a first step for studying star formation in the extreme outer Galaxy
(EOG), we obtained deep near-infrared images of two embedded clusters at the
northern and southern CO peaks of Cloud 2, which is one of the most distant
star forming regions in the outer Galaxy (galactic radius R_g ~ 19 kpc). With
high spatial resolution (FWHM ~ 0".35) and deep imaging (K ~ 21 mag) with the
IRCS imager at the Subaru telescope, we detected cluster members with a mass
detection limit of < 0.1 M_{sun}, which is well into the substellar regime.
These high quality data enables a comparison of EOG to those in the solar
neighborhood on the same basis for the first time. Before interpreting the
photometric result, we have first constructed the NIR color-color diagram
(dwarf star track, classical T Tauri star (CTTS) locus, reddening law) in the
Mauna Kea Observatory filter system and also for the low metallicity
environment since the metallicity in EOG is much lower than those in the solar
neighborhood. The estimated stellar density suggests that an ``isolated type''
star formation is ongoing in Cloud 2-N, while a ``cluster type'' star formation
is ongoing in Cloud 2-S. Despite the difference of the star formation mode,
other characteristics of the two clusters are found to be almost identical: (1)
K-band luminosity function (KLF) of the two clusters are quite similar, as is
the estimated IMF and ages (~ 0.5--1 Myr) from the KLF fitting, (2) the
estimated star formation efficiencies (SFEs) for both clusters are typical
compared to those of embedded clusters in the solar neighborhood (~ 10 %). The
similarity of two independent clusters with a large separation (~ 25 pc)
strongly suggest that their star formation activities were triggered by the
same mechanism, probably the supernova remnant (GSH 138-01-94).Comment: 14pages, 11 figures; Accepted for publication in Ap
A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high
signal-to-noise ratios toward distinct positions in three selected objects in
order to search for small-scale structure in molecular cloud cores associated
with regions of high-mass star formation. In some cases, ripples were detected
in the line profiles, which could be due to the presence of a large number of
unresolved small clumps in the telescope beam. The number of clumps for regions
with linear scales of ~0.2-0.5 pc is determined using an analytical model and
detailed calculations for a clumpy cloud model; this number varies in the
range: ~2 10^4-3 10^5, depending on the source. The clump densities range from
~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps
are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump
gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal
energy of the gas in the model clumps is much higher than their gravitational
energy. Their mean lifetimes can depend on the inter-clump collisional rates,
and vary in the range ~10^4-10^5 yr. These structures are probably connected
with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table
Olfactomedin 4 Serves as a Marker for Disease Severity in Pediatric Respiratory Syncytial Virus (RSV) Infection
Funding: Statement of financial support: The study was financially supported by the VIRGO consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK 03012). The authors have indicated they have no personal financial relationships relevant to this article to disclose. Data Availability Statement: The data is accessible at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69606.Peer reviewedPublisher PD
An expert consensus on the recommendations for the use of biomarkers in Fabry disease
Fabry disease is an X-linked lysosomal storage disorder caused by the accumulation of glycosphingolipids in various tissues and body fluids, leading to progressive organ damage and life-threatening complications. Phenotypic classification is based on disease progression and severity and can be used to predict outcomes. Patients with a classic Fabry phenotype have little to no residual α-Gal A activity and have widespread organ involvement, whereas patients with a later-onset phenotype have residual α-Gal A activity and disease progression can be limited to a single organ, often the heart. Diagnosis and monitoring of patients with Fabry disease should therefore be individualized, and biomarkers are available to support with this. Disease-specific biomarkers are useful in the diagnosis of Fabry disease; non-disease-specific biomarkers may be useful to assess organ damage. For most biomarkers it can be challenging to prove they translate to differences in the risk of clinical events associated with Fabry disease. Therefore, careful monitoring of treatment outcomes and collection of prospective data in patients are needed. As we deepen our understanding of Fabry disease, it is important to regularly re-evaluate and appraise published evidence relating to biomarkers. In this article, we present the results of a literature review of evidence published between February 2017 and July 2020 on the impact of disease-specific treatment on biomarkers and provide an expert consensus on clinical recommendations for the use of those biomarkers
- …