11 research outputs found
A new bridge between leptonic CP violation and leptogenesis
Flavor effects due to lepton interactions in the early Universe may have
played an important role in the generation of the cosmological baryon asymmetry
through leptogenesis. If the only source of high-energy CP violation comes from
the left-handed leptonic sector, then it is possible to establish a bridge
between flavored leptogenesis and low-energy leptonic CP violation. We explore
this connection taking into account our present knowledge about low-energy
neutrino parameters and the matter-antimatter asymmetry observed in the
Universe. In this framework, we find that leptogenesis favors a hierarchical
light neutrino mass spectrum, while for quasi-degenerate and inverted
hierarchical neutrino masses there is a very narrow allowed window. The
absolute neutrino mass scale turns out to be m < 0.1 eV.Comment: 10 pages, 3 figure
Spontaneous leptonic CP violation and nonzero
We consider a simple extension of the Standard Model by adding two Higgs
triplets and a complex scalar singlet to its particle content. In this
framework, the CP symmetry is spontaneously broken at high energies by the
complex vacuum expectation value of the scalar singlet. Such a breaking leads
to leptonic CP violation at low energies. The model also exhibits an flavour symmetry which, after being spontaneously broken at a high-energy
scale, yields a tribimaximal pattern in the lepton sector. We consider small
perturbations around the tribimaximal vacuum alignment condition in order to
generate nonzero values of , as required by the latest neutrino
oscillation data. It is shown that the value of recently measured
by the Daya Bay Reactor Neutrino Experiment can be accommodated in our
framework together with large Dirac-type CP violation. We also address the
viability of leptogenesis in our model through the out-of-equilibrium decays of
the Higgs triplets. In particular, the CP asymmetries in the triplet decays
into two leptons are computed and it is shown that the effective leptogenesis
and low-energy CP-violating phases are directly linked.Comment: 17 pages; 6 figures; references added and typos corrected. Final
version to appear in PR
Leptonic CP violation
Several topics on CP violation in the lepton sector are reviewed. A few
theoretical aspects concerning neutrino masses, leptonic mixing, and CP
violation will be covered, with special emphasis on seesaw models. A discussion
is provided on observable effects which are manifest in the presence of CP
violation, particularly, in neutrino oscillations and neutrinoless double beta
decay processes, and their possible implications in collider experiments such
as the LHC. The role that leptonic CP violation may have played in the
generation of the baryon asymmetry of the Universe through the mechanism of
leptogenesis is also discussed.Comment: 58 pages; a few misprints corrected and references added; final
version to appear in Reviews of Modern Physic
Neutrino Masses, Mixing and New Physics Effects
We introduce a parametrization of the effects of radiative corrections from
new physics on the charged lepton and neutrino mass matrices, studying how
several relevant quantities describing the pattern of neutrino masses and
mixing are affected by these corrections. We find that the ratio omega = sin
theta / tan theta_atm is remarkably stable, even when relatively large
corrections are added to the original mass matrices. It is also found that if
the lightest neutrino has a mass around 0.3 eV, the pattern of masses and
mixings is considerably more stable under perturbations than for a lighter or
heavier spectrum. We explore the consequences of perturbations on some flavor
relations given in the literature. In addition, for a quasi-degenerate neutrino
spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the
corrections to the mass matrices keep tan theta_atm very close to unity while
they can lower tan theta_sol to its measured value; (ii) beginning from a
scenario with a vanishing Dirac phase, corrections can induce a Dirac phase
large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and
references. Final version to appear in PR
Flavour Issues in Leptogenesis
We study the impact of flavour in thermal leptogenesis, including the quantum
oscillations of the asymmetries in lepton flavour space. In the Boltzmann
equations we find different numerical factors and additional terms which can
affect the results significantly. The upper bound on the CP asymmetry in a
specific flavour is weaker than the bound on the sum. This suggests that --
when flavour dynamics is included -- there is no model-independent limit on the
light neutrino mass scale,and that the lower bound on the reheat temperature is
relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation
Minimal Scenarios for Leptogenesis and CP Violation
The relation between leptogenesis and CP violation at low energies is
analyzed in detail in the framework of the minimal seesaw mechanism. Working,
without loss of generality, in a weak basis where both the charged lepton and
the right-handed Majorana mass matrices are diagonal and real, we consider a
convenient generic parametrization of the Dirac neutrino Yukawa coupling matrix
and identify the necessary condition which has to be satisfied in order to
establish a direct link between leptogenesis and CP violation at low energies.
In the context of the LMA solution of the solar neutrino problem, we present
minimal scenarios which allow for the full determination of the cosmological
baryon asymmetry and the strength of CP violation in neutrino oscillations.
Some specific realizations of these minimal scenarios are considered. The
question of the relative sign between the baryon asymmetry and CP violation at
low energies is also discussed.Comment: 36 pages, 5 figures; minor corrections and references updated. Final
version to appear in Phys. Rev.
Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis
We systematically investigate constraints on the parameters of the
supersymmetric type-I seesaw mechanism from the requirement of successful
thermal leptogenesis in the presence of upper bounds on the reheat temperature
of the early Universe. To this end, we solve the
flavour-dependent Boltzmann equations in the MSSM, extended to include
reheating. With conservative bounds on , leading to mildly
constrained scenarios for thermal leptogenesis, compatibility with observation
can be obtained for extensive new regions of the parameter space, due to
flavour-dependent effects. On the other hand, focusing on (normal) hierarchical
light and heavy neutrinos, the hypothesis that there is no CP violation
associated with the right-handed neutrino sector, and that leptogenesis
exclusively arises from the CP-violating phases of the matrix,
is only marginally consistent. Taking into account stricter bounds on
further suggests that (additional) sources of CP violation must
arise from the right-handed neutrino sector, further implying stronger
constraints for the right-handed neutrino parameters.Comment: 42 pages, 12 figures; final version published in JCAP; numerical
results for the efficiency factor can be downloaded from
http://www.newphysics.eu/leptogenesis