43 research outputs found

    Degradation of Aflatoxin B1 by a Sustainable Enzymatic Extract from Spent Mushroom Substrate of Pleurotus eryngii

    Get PDF
    Ligninolytic enzymes from white-rot fungi, such as laccase (Lac) and Mn-peroxidase (MnP), are able to degrade aflatoxin B1 (AFB1), the most harmful among the known mycotoxins. The high cost of purification of these enzymes has limited their implementation into practical technologies. Every year, tons of spent mushroom substrate (SMS) are produced as a by-product of edible mushroom cultivation, such as Pleurotus spp., and disposed at a cost for farmers. SMS may still bea source of ligninolytic enzymes useful for AFB1 degradation. The in vitro AFB1-degradative activity of an SMS crude extract (SMSE) was investigated. Results show that: (1) in SMSE, high Lac activity (4 U g−1 dry matter) and low MnP activity (0.4 U g−1 dry matter) were present; (2) after 1 d of incubation at 25 °C, the SMSE was able to degrade more than 50% of AFB1, whereas after 3 and 7 d of incubation, the percentage of degradation reached the values of 75% and 90%, respectively; (3) with increasing pH values, the degradation percentage increased, reaching 90% after 3 d at pH 8. Based on these results, SMS proved to be a suitable source of AFB1 degrading enzymes and the use of SMSE to detoxify AFB1 contaminated commodities appears conceivable

    In Vitro Downregulation of Matrix Metalloproteinase-9 in Rat Glial Cells by CCR5 Antagonist Maraviroc: Therapeutic Implication for HIV Brain Infection

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) released by glial cells are important mediators of neuroinflammation and neurologic damage in HIV infection. The use of antiretroviral drugs able to combat the detrimental effect of chronic inflammation and target the exaggerated MMP activity might represent an attractive therapeutic challenge. Recent studies suggest that CCR5 antagonist maraviroc (MVC) exerts immunomodulant and anti-inflammatory activity beyond its anti-HIV properties. We investigated the in vitro effect of MVC on the activity of MMPs in astrocyte and microglia cultures. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of rat astrocytes and microglia were activated by exposure to phorbol myristate acetate (PMA) or lypopolysaccharide (LPS) and treated in vitro with MVC. Culture supernatants were subjected to gelatin zymography and quantitative determination of MMP-9 and MMP-2 was done by computerized scanning densitometry. MMP-9 levels were significantly elevated in culture supernatants from both LPS- and PMA-activated astrocytes and microglia in comparison to controls. The treatment with MVC significantly inhibited in a dose-dependent manner the levels and expression of MMP-9 in PMA-activated astrocytes (p<0,05) and, to a lesser extent, in PMA-activated microglia. By contrast, levels of MMP-2 did not significantly change, although a tendency to decrease was seen in PMA-activated astrocytes after treatment with MVC. The inhibition of levels and expression of MMP-9 in PMA-activated glial cells did not depend on cytotoxic effects of MVC. No inhibition of MMP-9 and MMP-2 were found in both LPS-activated astrocytes and microglia. CONCLUSIONS: The present in vitro study suggests that CCR5 antagonist compounds, through their ability to inhibit MMP-9 expression and levels, might have a great potential for the treatment of HIV-associated neurologic damage

    Ozone-induced hypertussive responses in rabbits and guinea pigs

    Get PDF
    Cough remains a major unmet clin. need, and preclin. animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacol. sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (b2 agonists or muscarinic receptor antagonists), suggesting that the obsd. hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the antiinflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs

    Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii).

    No full text
    Aflatoxin B1 (AFB1) is the most harmful mycotoxin that occurs as natural contaminant of agricultural commodities, particularly maize. Practical solutions for detoxification of contaminated staples and reduction of agricultural wastes are scarce. We investigated the capability of the white-rot and edible fungus Plerotus eryngii (king oyster mushroom) to degrade AFB1 both in vitro and in a laboratory-scale mushroom cultivation, using a substrate similar to that routinely used in mushroom farms. In malt extract broth, degradation of AFB1 (500 ng/mL) by nine isolates of P. eryngii ranged from 81 to 99% after 10 days growth, and reached 100% for all isolates after 30 days. The growth of P. eryngii on solid medium (malt extract-agar, MEA) was significantly reduced at concentrations of AFB1 500 ng/mL or higher. However, the addition of 5% wheat straw to the culture medium increased the tolerance of P. eryngii to AFB1 and no inhibition was observed at a AFB1 content of 500 ng/mL; degradation of AFB1 in MEA supplemented with 5% wheat straw and 2.5% (w/v) maize flour was 71-94% after 30 days of growth. Further, AFB1 degradation by P. eryngii strain ITEM 13681 was tested in a laboratory-scale mushroom cultivation. The mushroom growth medium contained 25% (w/w) of maize spiked with AFB1 to the final content of 128 μg/kg. Pleurotus eryngii degraded up to 86% of the AFB1 in 28 days, with no significant reduction of either biological efficiency or mushroom yield. Neither the biomass produced on the mushroom substrate nor the mature basidiocarps contained detectable levels of AFB1 or its metabolite aflatoxicol, thus ruling out the translocation of these toxins through the fungal thallus. These findings make a contribution towards the development of a novel technology for remediation of AFB1- contaminated corn through the exploitation of the degradative capability of P. eryngii and its bioconversion into high nutritional value material intended for feed production
    corecore