9 research outputs found

    Comparison between control-based continuation and phase-locked loop methods for the identification of backbone curves and nonlinear frequency responses

    Get PDF
    Control-based continuation (CBC) and phase-locked loops (PLL) are two experimental testing methods that have demonstrated great potential for the non-parametric identification of key nonlinear dynamic features such as nonlinear frequency responses and backbone curves. Both CBC and PLL exploit stabilizing feedback control to steer the dynamics of the tested system towards the responses of interest and overcome important difficulties experienced when applying conventional testing methods such as sine sweeps to nonlinear systems. For instance, if properly designed, the feedback controller can prevent the system from exhibiting untimely transitions between coexisting responses or even losing stability due to bifurcations. This contribution aims to highlight the similarities that exist between CBC and PLL and present the first thorough comparison of their capabilities. Comparisons are supported by numerical simulations as well as experimental data collected on a conceptually simple nonlinear structure primarily composed of a thin curved beam. The beam is doubly clamped and exhibits nonlinear geometric effects for moderate excitation amplitudes

    Measurement and identification of the nonlinear dynamics of a jointed structure using full-field data, Part I: Measurement of nonlinear dynamics

    No full text
    Jointed structures are ubiquitous constituents of engineering systems; however, their dynamic properties (e.g., natural frequencies and damping ratios) are challenging to identify correctly due to the complex, nonlinear nature of interfaces. This research seeks to extend the efficacy of traditional experimental methods for linear system identification (such as impact testing, shaker ringdown testing, random excitation, and force or amplitude-control stepped sine testing) on nonlinear jointed systems, e.g., the half Brake–Reuß beam, by augmenting them with full-field data collected by high-speed videography. The full-field response is acquired using high-speed cameras combined with Digital Image Correlation (DIC), which enables studying the spatial–temporal dynamic characteristics of the system. As this is a video-based experiment, additional constraints are attached to the beam at the node points to remove the rigid body motion, which ensures that the beam is in the view of the camera during the entire test. The use of a video-based method introduces new sources of experimental error, such as noise from the high-speed camera’s fan and electrical noise, and so the measurement accuracy of DIC is validated using accelerometer data. After validating the DIC data, the measurements are recorded for several types of excitation, including hammer testing, shaker ringdown testing, fixed sine testing, and stepped sine testing. Using the DIC data to augment standard nonlinear system identification techniques, modal coupling and the mode shapes’ evolution are investigated. The suitability of videography methods for nonlinear system identification of nonlinear beams is explored for the first time in this paper, and recommendations for techniques to facilitate this process are made. This article focuses on developing an accurate data collection methodology as well as recommendations for nonlinear testing with DIC, which paves the way for video-based investigation of nonlinear system identification. In Part-II (Jin et al., 2021) of this work, the same data set is used for a rigorous assessment of nonlinear system identification with full-field DIC data

    Measurement and identification of the nonlinear dynamics of a jointed structure using full-field data; Part II- Nonlinear system identification

    No full text
    The dynamic responses of assembled structures are greatly affected by the mechanical joints, which are often the cause of nonlinear behavior. To better understand and, in the future, tailor the nonlinearities, accurate methods are needed to characterize the dynamic properties of jointed structures. In this paper, the nonlinear characteristics of a jointed beam is studied with the help of multiple identification methods, including the Hilbert Transform method, Peak Finding and Fitting method, Dynamic Mode Decomposition method, State-Space Spectral Submanifold, and Wavelet-Bounded Empirical Mode Decomposition method. The nonlinearities are identified by the responses that are measured via accelerometers in a series of experiments that consist of hammer testing, shaker ringdown testing, and response/force-control stepped sine testing. In addition to accelerometers, two high-speed cameras are used to capture the motion of the whole structure during the shaker ringdown testing. Digital Image Correlation (DIC) is then adopted to obtain the displacement responses and used to determine the mode shapes of the jointed beam. The accuracy of the DIC data is validated by the comparison between the identification results of acceleration and displacement signals. As enabled by full-field data, the energy-dependent characteristics of the structure are also presented. The setup of the different experiments is described in detail in Part I (Chen et al., 2021) of this research. The focus of this paper is to compare nonlinear system identification methods applied to different measurement techniques and to exploit the use of high spatial resolution data
    corecore