1,150 research outputs found
Towards the Holy Grail: combining system dynamics and discrete-event simulation in healthcare
The idea of combining discrete-event simulation and system dynamics has been a topic of debate in theoperations research community for over a decade. Many authors have considered the potential benefits ofsuch an approach from a methodological or practical standpoint. However, despite numerous examples ofmodels with both discrete and continuous parameters in the computer science and engineering literature,nobody in the OR field has yet succeeded in developing a genuinely hybrid approach which truly integratesthe philosophical approach and technical merits of both DES and SD in a single model. In this paperwe consider some of the reasons for this and describe two practical healthcare examples of combinedDES/SD models, which nevertheless fall short of the “holy grail” which has been so widely discussed inthe literature over the past decade
Modelling very large complex systems using distributed simulation: A pilot study in a healthcare setting
Modern manufacturing supply chains are hugely complex and like all stochastic systems, can benefit from simulation. Unfortunately supply chain systems often result in massively large and complicated models, which even today’s powerful computers cannot run efficiently. This paper presents one possible solution - distributed simulation. This pilot study is implemented in a healthcare setting, the supply chain of blood from donor to recipient
Recommended from our members
Comparing conventional and distributed approaches to simulation in complex supply-chain health systems
Decision making in modern supply chains can be extremely daunting due to their complex nature. Discrete-event simulation is a technique that can support decision making by providing what-if analysis and evaluation of quantitative data. However, modelling supply chain systems can result in massively large and complicated models that can take a very long time to run even with today's powerful desktop computers. Distributed simulation has been suggested as a possible solution to this problem, by enabling the use of multiple computers to run models. To investigate this claim, this paper presents experiences in implementing a simulation model with a 'conventional' approach and with a distributed approach. This study takes place in a healthcare setting, the supply chain of blood from donor to recipient. The study compares conventional and distributed model execution times of a supply chain model simulated in the simulation package Simul8. The results show that the execution time of the conventional approach increases almost linearly with the size of the system and also the simulation run period. However, the distributed approach to this problem follows a more linear distribution of the execution time in terms of system size and run time and appears to offer a practical alternative. On the basis of this, the paper concludes that distributed simulation can be successfully applied in certain situations
Distributed simulation with COTS simulation packages: A case study in health care supply chain simulation
The UK National Blood Service (NBS) is a public funded body that is responsible for distributing blood and asso-ciated products. A discrete-event simulation of the NBS supply chain in the Southampton area has been built using the commercial off-the-shelf simulation package (CSP) Simul8. This models the relationship in the health care supply chain between the NBS Processing, Testing and Is-suing (PTI) facility and its associated hospitals. However, as the number of hospitals increase simulation run time be-comes inconveniently large. Using distributed simulation to try to solve this problem, researchers have used techniques informed by SISO’s CSPI PDG to create a version of Simul8 compatible with the High Level Architecture (HLA). The NBS supply chain model was subsequently divided into several sub-models, each running in its own copy of Simul8. Experimentation shows that this distri-buted version performs better than its standalone, conven-tional counterpart as the number of hospitals increases
Knowledge tree: Putting discourse into computer‐based learning
Most CBL materials currently in use model only the declarative aspects of the learning process. If such courseware is used without careful planning, this can be dangerous because one of the most fundamental aspects of education is the dialogue that occurs between teachers and the students. Traditionally, this has taken place in informal discussions as well as in formal small‐group learning sessions such as the conventional tutorial. However, as the student‐staff ratio increases, so does the opportunity for this type of personal dialogue decrease. Modern networking technology offers a huge potential to add discourse to CBL, but there are many pedagogical problems involved with the intrinsically ephemeral and anarchic nature both of the Internet and of most conferencing or bulletin‐board systems. In this paper we describe a software system called Knowledge Tree (KT) which we have developed to address some of these issues. KT combines a hierarchical concept‐oriented database functionality with that of a Usenet‐style bulletin board Using this, a knowledge garden may be developed for any subject area. These each contain a hypermedia database of frequently asked questions, together with answers provided by subject experts. There is provision for inter‐student discussions of problems and issues. When students ask new questions these are automatically emailed to a relevant subject expert (determined by a subject‐specific concept thesaurus). The answer is then placed in the database which eventually grows to become a valuable teaching resource. KT is discipline‐independent as the concept thesaurus can be changed to encapsulate any domain of knowledge. We have used it in support of conventional lecture courses, as an important component of a multimedia course, and for general IT support. These examples illustrate the role that this system can play both in basic information provision, and in facilitating the discussion of deep issues
Exploring alternative routes to realising the benefits of simulation in healthcare
Discrete event simulation should offer numerous benefits in designing healthcare systems but the reality is often problematic. Healthcare modelling faces particular challenges: genuine, fundamental variations in practice and an opposition to any suggestion of standardisation from some professional groups. This paper compares the experiences of developing a new simulation in an Accident and Emergency (A&E) Department, a subsequent adaptation for modelling an outpatient clinic and applications of a generic A&E simulation. These studies provide examples of three distinct approaches to realising the potential benefits of simulation: the bespoke, the reuse and the generic route. Reuse has many advantages: it is relatively efficient in exploiting previous modelling experience, delivering timely results while providing scope for adaptations to local practice. Explicitly demonstrating this willingness to adapt to local conditions and engaging with stakeholders is particularly important in healthcare simulation
Document analysis of PDF files: methods, results and implications
A strategy for document analysis is presented which uses Portable Document Format (PDF the underlying file structure for Adobe Acrobat software) as its starting point. This strategy examines the appearance and geometric position of text and image blocks distributed over an entire document. A blackboard system is used to tag the blocks as a first stage in deducing the fundamental relationships existing between them. PDF is shown to be a useful intermediate stage in the bottom-up analysis of document structure. Its information on line spacing and font usage gives important clues in bridging the semantic gap between the scanned bitmap page and its fully analysed, block-structured form. Analysis of PDF can yield not only accurate page decomposition but also sufficient document information for the later stages of structural analysis and document understanding
Emergency and on-demand health care: modelling a large complex system
This paper describes how system dynamics was used as a central part of a whole-system review of emergency and on-demand health care in Nottingham, England. Based on interviews with 30 key individuals across health and social care, a 'conceptual map' of the system was developed, showing potential patient pathways through the system. This was used to construct a stock-flow model, populated with current activity data, in order to simulate patient flows and to identify system bottle-necks. Without intervention, assuming current trends continue, Nottingham hospitals are unlikely to reach elective admission targets or achieve the government target of 82% bed occupancy. Admissions from general practice had the greatest influence on occupancy rates. Preventing a small number of emergency admissions in elderly patients showed a substantial effect, reducing bed occupancy by 1% per annum over 5 years. Modelling indicated a range of undesirable outcomes associated with continued growth in demand for emergency care, but also considerable potential to intervene to alleviate these problems, in particular by increasing the care options available in the community
Recommended from our members
Using CSPI distributed simulation standards for the analysis of a health supply chain
COTS Simulation Package Interoperability is a problem that has been studied by the Simulation Interoperability Standards Organization’s (SISO) COTS Simulation Package Interoperability Product Development Group (CSPI PDG). The UK National Blood Service maintains the supply chain of blood from donor to hospital. The simulation of this supply chain is vital to better support decisons made for an extremely scarce resource. Such models are very large and can take a very long time to execute. This paper investigates whether or not CSPI PDG standards can be used to create a distributed simulation of this supply chain and if a speed up can be achieved. The results show that for larger blood supply chain models this is the case
Art Play: Stories of Engaging Families, Inspiring Learning, and Exploring Emotions
Collage is the ultimate playful technique . . . . When you put it all together, you create something new. It is really about trial and error . . . about trying things and making mistakes. It’s about forgiving yourself when you make mistakes, and playfulness lets you do that. —Hanoch Piven, “Living in a Playful Collage” Hanoch Piven, an internationally known collage-caricature artist, visited Omaha, Nebraska, to conduct arts-based workshops for families, teachers, and children. The workshops were organized by the Omaha Family Literacy Partnership (OFLP). The partnership promotes literacy learning among children and their families through community activities such as author and illustrator visits, family book celebrations, storytelling events, book distributions, and puppet shows. The OFLP invited Piven, an author and illustrator of children’s books, because of his connection to literacy. Playful explorations with objects is his method of creating art, and this method was the focus of the workshops
- …