446 research outputs found

    Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression

    Full text link
    Infrared femtosecond laser pulses are important tools both in strong-field physics, driving X-ray high-harmonic generation, and as the basis for widely tuneable, if inefficient, ultrafast sources in the visible and ultraviolet. Although anomalous material dispersion simplifies compression to few-cycle pulses, attosecond pulses in the infrared have remained out of reach. We demonstrate soliton self-compression of 1800 nm laser pulses in hollow capillary fibers to sub-cycle envelope duration (2 fs) with 27 GW peak power, corresponding to attosecond field transients. In the same system, we generate wavelength-tuneable few-femtosecond pulses from the ultraviolet (300 nm) to the infrared (740 nm) with energy up to 25 μ\muJ and efficiency up to 12 %, and experimentally characterize the generation dynamics in the time-frequency domain. A compact second stage generates multi-μ\muJ pulses from 210 nm to 700 nm using less than 200 μ\muJ of input energy. Our results significantly expand the toolkit available to ultrafast science.Comment: 8 pages, 5 figure

    High-energy ultraviolet dispersive-wave emission in compact hollow capillary systems

    Get PDF
    We demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34cm) hollow capillary fibres. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 μ\mum) and pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to 6 μ\muJ across the deep ultraviolet in a 100 μ\mum capillary and up to 11 μ\muJ in a 150 μ\mum capillary. From comparisons to simulations we estimate the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study the influence of pump duration on the bandwidth of the dispersive wave.Comment: 5 pages, 3 figure

    Tunable Cavity Optomechanics with Ultracold Atoms

    Full text link
    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.Comment: 4 pages, 5 figure
    • …
    corecore