143 research outputs found

    Genome sequences of six Phytophthora species threatening forest ecosystems

    Get PDF
    AbstractThe Phytophthora genus comprises of some of the most destructive plant pathogens and attack a wide range of hosts including economically valuable tree species, both angiosperm and gymnosperm. Many known species of Phytophthora are invasive and have been introduced through nursery and agricultural trade. As part of a larger project aimed at utilizing genomic data for forest disease diagnostics, pathogen detection and monitoring (The TAIGA project: Tree Aggressors Identification using Genomic Approaches; http://taigaforesthealth.com/), we sequenced the genomes of six important Phytophthora species that are important invasive pathogens of trees and a serious threat to the international trade of forest products. This genomic data was used to develop highly sensitive and specific detection assays and for genome comparisons and to make evolutionary inferences and will be useful to the broader plant and tree health community. These WGS data have been deposited in the International Nucleotide Sequence Database Collaboration (DDBJ/ENA/GenBank) under the accession numbers AUPN01000000, AUVH01000000, AUWJ02000000, AUUF02000000, AWVV02000000 and AWVW02000000

    NASA/Haughton-Mars Project 2006 Lunar Medical Contingency Simulation

    Get PDF
    A viewgraph presentation describing NASA's Haughton-Mars Project (HMP) medical requirements and lunar surface operations is shown. The topics onclude: 1) Mission Purpose/ Overview; 2) HMP as a Moon/Mars Analog; 3) Simulation objectives; 4) Discussion; and 5) Forward work

    Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum

    Get PDF
    Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry.

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogensCladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu \u3e61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation

    Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis.

    Get PDF
    The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicolawas sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicolagenome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors

    Logistic support provided to Australian disaster medical assistance teams: results of a national survey of team members

    Get PDF
    Background: It is likely that calls for disaster medical assistance teams (DMATs) continue in response to international disasters. As part of a national survey, the present study was designed to evaluate the Australian DMAT experience and the need for logistic support.\ud \ud Methods: Data were collected via an anonymous mailed survey distributed via State and Territory representatives on the Australian Health Protection Committee, who identified team members associated with Australian DMAT deployments from the 2004 Asian Tsunami disaster.\ud \ud Results: The response rate for this survey was 50% (59/118). Most of the personnel had deployed to the South East Asian Tsunami affected areas. The DMAT members had significant clinical and international experience. There was unanimous support for dedicated logistic support with 80% (47/59) strongly agreeing. Only one respondent (2%) disagreed with teams being self sufficient for a minimum of 72 hours. Most felt that transport around the site was not a problem (59%; 35/59), however, 34% (20/59) felt that transport to the site itself was problematic. Only 37% (22/59) felt that pre-deployment information was accurate. Communication with local health providers and other agencies was felt to be adequate by 53% (31/59) and 47% (28/59) respectively, while only 28% (17/59) felt that documentation methods were easy to use and reliable. Less than half (47%; 28/59) felt that equipment could be moved easily between areas by team members and 37% (22/59) that packaging enabled materials to be found easily. The maximum safe container weight was felt to be between 20 and 40 kg by 58% (34/59).\ud \ud Conclusions: This study emphasises the importance of dedicated logistic support for DMAT and the need for teams to be self sufficient for a minimum period of 72 hours. There is a need for accurate pre deployment information to guide resource prioritisation with clearly labelled pre packaging to assist access on site. Container weights should be restricted to between 20 and 40 kg, which would assist transport around the site, while transport to the site was seen as problematic. There was also support for training of all team members in use of basic equipment such as communications equipment, tents and shelters and water purification systems

    Appunti sul movimento antifascista sloveno della Venezia Giulia

    Get PDF
    <div><p>The class <em>Dothideomycetes</em> is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The <em>Dothideomycetes</em> most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several <em>Dothideomycetes</em> contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 <em>Dothideomycetes</em> offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the <em>Dothideomycetes</em>, the <em>Capnodiales</em> and <em>Pleosporales</em>, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most <em>Dothideomycetes</em> and upregulated during infection in <em>L. maculans</em>, suggesting a possible function in response to oxidative stress.</p> </div

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
    corecore