491 research outputs found
Generation of mechanical squeezing via magnetic dipoles on cantilevers
A scheme to squeeze the center-of-mass motional quadratures of a quantum
mechanical oscillator below its standard quantum limit is proposed and analyzed
theoretically. It relies on the dipole-dipole coupling between a magnetic
dipole mounted on the tip of a cantilever to equally oriented dipoles located
on a mesoscopic tuning fork. We also investigate the influence of several
sources of noise on the achievable squeezing, including classical noise in the
driving fork and the clamping noise in the oscillator. A detection of the state
of the cantilever based on state transfer to a light field is considered. We
investigate possible limitations of that scheme.Comment: 11 pages, 11 figures, submitted to PR
Impurity and Trace Tritium Transport in Tokamak Edge Turbulence
The turbulent transport of impurity or minority species, as for example
Tritium, is investigated in drift-Alfv\'en edge turbulence. The full effects of
perpendicular and parallel convection are kept for the impurity species. The
impurity density develops a granular structure with steep gradients and locally
exceeds its initial values due to the compressibility of the flow. An
approximate decomposition of the impurity flux into a diffusive part and an
effective convective part (characterized by a pinch velocity) is performed and
a net inward pinch effect is recovered. The pinch velocity is explained in
terms of Turbulent Equipartition and is found to vary poloidally. The results
show that impurity transport modeling needs to be two-dimensional, considering
besides the radial direction also the strong poloidal variation in the
transport coefficients.Comment: 12 Pages, 5 Figure
Cavity cooling of an optically trapped nanoparticle
We study the cooling of a dielectric nanoscale particle trapped in an optical
cavity. We derive the frictional force for motion in the cavity field, and show
that the cooling rate is proportional to the square of oscillation amplitude
and frequency. Both the radial and axial centre-of-mass motion of the trapped
particle, which are coupled by the cavity field, are cooled. This motion is
analogous to two coupled but damped pendulums. Our simulations show that the
nanosphere can be cooled to 1/e of its initial momentum over time scales of
hundredths of milliseconds.Comment: 11 page
Demonstration of an erbium doped microdisk laser on a silicon chip
An erbium doped micro-laser is demonstrated utilizing
microdisk resonators on a silicon chip. Passive microdisk resonators exhibit
whispering gallery type (WGM) modes with intrinsic optical quality factors of
up to and were doped with trivalent erbium ions (peak
concentration using MeV ion
implantation. Coupling to the fundamental WGM of the microdisk resonator was
achieved by using a tapered optical fiber. Upon pumping of the erbium transition at 1450 nm, a gradual
transition from spontaneous to stimulated emission was observed in the 1550 nm
band. Analysis of the pump-output power relation yielded a pump threshold of 43
W and allowed measuring the spontaneous emission coupling factor:
Cavity spin optodynamics
The dynamics of a large quantum spin coupled parametrically to an optical
resonator is treated in analogy with the motion of a cantilever in cavity
optomechanics. New spin optodynamic phenonmena are predicted, such as
cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent
amplification and damping of spin, and the spin optodynamic squeezing of light.Comment: 4 pages, 3 figure
Collisional transport across the magnetic field in drift-fluid models
Drift ordered fluid models are widely applied in studies of low-frequency
turbulence in the edge and scrape-off layer regions of magnetically confined
plasmas. Here, we show how collisional transport across the magnetic field is
self-consistently incorporated into drift-fluid models without altering the
drift-fluid energy integral. We demonstrate that the inclusion of collisional
transport in drift-fluid models gives rise to diffusion of particle density,
momentum and pressures in drift-fluid turbulence models and thereby obviate the
customary use of artificial diffusion in turbulence simulations. We further
derive a computationally efficient, two-dimensional model which can be time
integrated for several turbulence de-correlation times using only limited
computational resources. The model describes interchange turbulence in a
two-dimensional plane perpendicular to the magnetic field located at the
outboard midplane of a tokamak. The model domain has two regions modeling open
and closed field lines. The model employs a computational expedient model for
collisional transport. Numerical simulations show good agreement between the
full and the simplified model for collisional transport
The Hall instability of weakly ionized, radially stratified, rotating disks
Cool weakly ionized gaseous rotating disk, are considered by many models as
the origin of the evolution of protoplanetary clouds. Instabilities against
perturbations in such disks play an important role in the theory of the
formation of stars and planets. Thus, a hierarchy of successive fragmentations
into smaller and smaller pieces as a part of the Kant-Laplace theory of
formation of the planetary system remains valid also for contemporary
cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently
Hall-MHD instabilities have been thoroughly studied as providers of an
efficient mechanism for radial transfer of angular momentum, and of density
radial stratification. In the current work, the Hall instability against
nonaxisymmetric perturbations in compressible rotating fluids in external
magnetic field is proposed as a viable mechanism for the azimuthal
fragmentation of the protoplanetary disk and thus perhaps initiating the road
to planet formation. The Hall instability is excited due to the combined effect
of the radial stratification of the disk and the Hall electric field, and its
growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure
Dissipation in intercluster plasma
We discuss dissipative processes in strongly gyrotropic, nearly collisionless
plasma in clusters of galaxies (ICM). First, we point out that Braginsky
theory, which assumes that collisions are more frequent that the system's
dynamical time scale, is inapplicable to fast, sub-viscous ICM motion. Most
importantly, the electron contribution to collisional magneto-viscosity
dominates over that of ions for short-scale Alfvenic motions. Thus, if a
turbulent cascade develops in the ICM and propagates down to scales
kpc, it is damped collisionally not on ions, but on electrons. Second, in high
beta plasma of ICM, small variations of the magnetic field strength, of
relative value , lead to development of anisotropic pressure
instabilities (firehose, mirror and cyclotron). Unstable wave modes may provide
additional resonant scattering of particles, effectively keeping the plasma in
a state of marginal stability. We show that in this case the dissipation rate
of a laminar, subsonic, incompressible flows scales as inverse of plasma beta
parameter. We discuss application to the problem of ICM heating.Comment: 4 pages, accepted by ApJ Let
Turbulence, magnetic fields and plasma physics in clusters of galaxies
Observations of galaxy clusters show that the intracluster medium (ICM) is
likely to be turbulent and is certainly magnetized. The properties of this
magnetized turbulence are determined both by fundamental nonlinear
magnetohydrodynamic interactions and by the plasma physics of the ICM, which
has very low collisionality. Cluster plasma threaded by weak magnetic fields is
subject to firehose and mirror instabilities. These saturate and produce
fluctuations at the ion gyroscale, which can scatter particles, increasing the
effective collision rate and, therefore, the effective Reynolds number of the
ICM. A simple way to model this effect is proposed. The model yields a
self-accelerating fluctuation dynamo whereby the field grows explosively fast,
reaching the observed, dynamically important, field strength in a fraction of
the cluster lifetime independent of the exact strength of the seed field. It is
suggested that the saturated state of the cluster turbulence is a combination
of the conventional isotropic magnetohydrodynamic turbulence, characterized by
folded, direction-reversing magnetic fields and an Alfv\'en-wave cascade at
collisionless scales. An argument is proposed to constrain the reversal scale
of the folded field. The picture that emerges appears to be in qualitative
agreement with observations of magnetic fields in clusters.Comment: revtex, 9 pages, 5 figures; invited talk for the 47th APS DPP
Meeting, Denver, CO, Oct 2005; minor corrections to match the published
versio
- …