106 research outputs found
Radial abundance gradients in the outer Galactic disk as traced by main-sequence OB stars
Using a sample of 31 main-sequence OB stars located between galactocentric
distances 8.4 - 15.6 kpc, we aim to probe the present-day radial abundance
gradients of the Galactic disk. The analysis is based on high-resolution
spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m
telescope on Las Campanas. We used a non-NLTE analysis in a self-consistent
semi-automatic routine based on TLUSTY and SYNSPEC to determine atmospheric
parameters and chemical abundances. Stellar parameters (effective temperature,
surface gravity, projected rotational velocity, microturbulence, and
macroturbulence) and silicon and oxygen abundances are presented for 28 stars
located beyond 9 kpc from the Galactic centre plus three stars in the solar
neighborhood. The stars of our sample are mostly on the main-sequence, with
effective temperatures between 20800 - 31300 K, and surface gravities between
3.23 - 4.45 dex. The radial oxygen and silicon abundance gradients are negative
and have slopes of -0.07 dex/kpc and -0.09 dex/kpc, respectively, in the region
\,kpc. The obtained gradients are compatible with the
present-day oxygen and silicon abundances measured in the solar neighborhood
and are consistent with radial metallicity gradients predicted by
chemodynamical models of Galaxy Evolution for a subsample of young stars
located close to the Galactic plane.Comment: Accepted for publication in the A&
Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse
We report on spin valve devices that incorporate both an out-of-plane
polarizer (OPP) to quickly excite spin torque (ST) switching and an in-plane
polarizer/analyzer (IPP). For pulses < 200 ps we observe reliable precessional
switching due largely to ST from the OPP. Compared to a conventional spin
valve, for a given current in the short pulse regime the addition of the OPP
can decrease the pulse width necessary for switching by a factor of 10 or more.
The influence of the IPP is most obvious at longer, smaller pulses, but also
has beneficial ST consequences for short pulse switching.Comment: 14 pages, 2 figure
Spin-Torque Ferromagnetic Resonance Measurements of Damping in Nanomagnets
We measure the magnetic damping parameter a in thin film CoFeB and permalloy
(Py) nanomagnets at room temperature using ferromagnetic resonance driven by
microwave frequency spin-transfer torque. We obtain and , values comparable to measurements for
extended thin films, but significantly less than the effective damping
determined previously for similar nanomagnets by fits to time-domain studies of
large-angle magnetic excitations and magnetic reversal. The greater damping
found for the large amplitude nanomagnet dynamics is attributed to the
nonlinear excitation of non-uniform magnetic modes.Comment: 13 pages, 2 figure
Spin-Transfer Effects in Nanoscale Magnetic Tunnel Junctions
We report measurements of magnetic switching and steady-state magnetic
precession driven by spin-polarized currents in nanoscale magnetic tunnel
junctions with low-resistance, < 5 Ohm-micron-squared, barriers. The current
densities required for magnetic switching are similar to values for
all-metallic spin-valve devices. In the tunnel junctions, spin-transfer-driven
switching can occur at voltages that are high enough to quench the tunnel
magnetoresistance, demonstrating that the current remains spin-polarized at
these voltages
Magnetic vortex oscillator driven by dc spin-polarized current
Transfer of angular momentum from a spin-polarized current to a ferromagnet
provides an efficient means to control the dynamics of nanomagnets. A peculiar
consequence of this spin-torque, the ability to induce persistent oscillations
of a nanomagnet by applying a dc current, has previously been reported only for
spatially uniform nanomagnets. Here we demonstrate that a quintessentially
nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale
spin valve structure, can be excited into persistent microwave-frequency
oscillations by a spin-polarized dc current. Comparison to micromagnetic
simulations leads to identification of the oscillations with a precession of
the vortex core. The oscillations, which can be obtained in essentially zero
magnetic field, exhibit linewidths that can be narrower than 300 kHz, making
these highly compact spin-torque vortex oscillator devices potential candidates
for microwave signal-processing applications, and a powerful new tool for
fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure
- …