6,518 research outputs found
INTEGRAL observations of Sco X-1: evidence for Comptonization up to 200 keV
We have analyzed a long-term database for Sco X-1 obtained with the telescope
IBIS onboard the INTEGRAL satellite in order to study the hard X-ray behavior
of Sco X-1 from 20 up to 200 keV. Besides the data used for producing of the
INTEGRAL catalog of sources, this is the longest (412 ks) database of IBIS on
Sco X-1 up to date. The production of hard X-ray tails in low-mass X-ray
binaries is still a matter of debate. Since most of the fits to the high-energy
part of the spectra are done with powerlaw models, the physical mechanism for
the hard X-ray tail production is unclear. The purpose of this study is to
better constrain those possible mechanisms. Our main result shows a strong
correlation between the fluxes in the thermal and nonthermal part of Sco X-1
spectra. We thus suggest that Comptonization of lower energy photons is the
mechanism for producing hard X-ray tails in Sco X-1.Comment: 4 pages, 3 figures, 2 tables; officially accepted for publication (as
a Letter) by A&A in 2013 January 2
Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state
Hard X-ray spectra of black hole binaries in the low/hard state are well
modeled by thermal Comptonization of soft seed photons by a corona-type region
with \thinspace{\thinspace}keV and optical depth around 1.
Previous spectral studies of 1E{\thinspace}1740.72942, including both the
soft and the hard X-ray bands, were always limited by gaps in the spectra or by
a combination of observations with imaging and non-imaging instruments. In this
study, we have used three rare nearly-simultaneous observations of
1E{\thinspace}1740.71942 by both XMM-Newton and INTEGRAL satellites to
combine spectra from four different imaging instruments with no data gaps, and
we successfully applied the Comptonization scenario to explain the broadband
X-ray spectra of this source in the low/hard state. For two of the three
observations, our analysis also shows that, models including Compton reflection
can adequately fit the data, in agreement with previous reports. We show that
the observations can also be modeled by a more detailed Comptonization scheme.
Furthermore, we find the presence of an iron K-edge absorption feature in one
occasion, which confirms what had been previously observed by Suzaku. Our
broadband analysis of this limited sample shows a rich spectral variability in
1E{\thinspace}1740.72942 at the low/hard state, and we address the possible
causes of these variations. More simultaneous soft/hard X-ray observations of
this system and other black-hole binaries would be very helpful in constraining
the Comptonization scenario and shedding more light on the physics of these
systems.Comment: 6 pages, two figures, accepted for publication in A&
A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy
We propose a new, more realistic, description of the perturbed gravitational
potential of spiral galaxies, with spiral arms having Gaussian-shaped groove
profiles. We investigate the stable stellar orbits in galactic disks, using the
new perturbed potential. The influence of the bulge mass on the stellar orbits
in the inner regions of a disk is also investigated. The new description offers
the advantage of easy control of the parameters of the Gaussian profile of its
potential. We find a range of values for the perturbation amplitude from 400 to
800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force
to the axisymmetric force between 3% and 6%, approximately. Good
self-consistency of arm shapes is obtained between the Inner Lindblad resonance
(ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts
to deviate from the imposed logarithmic spiral form. This creates bifurcations
that appear as short arms. Therefore the deviation from a perfect logarithmic
spiral in galaxies can be understood as a natural effect of the 4:1 resonance.
Beyond the 4:1 resonance we find closed orbits which have similarities with the
arms observed in our Galaxy. In regions near the center, in the presence of a
massive bulge, elongated stellar orbits appear naturally, without imposing any
bar-shaped potential, but only extending the spiral perturbation a little
inward of the ILR. This suggests that a bar is formed with a half-size around 3
kpc by a mechanism similar to that of the spiral arms. The potential energy
perturbation that we adopted represents an important step in the direction of
self-consistency, compared to previous sine function descriptions of the
potential. Our model produces a realistic description of the spiral structure,
able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1
Efeito do tipo de poda de formação na produtividade do cajueiro anão precoce em plantio adensado.
bitstream/CNPAT-2010/5601/1/Pa-027.pd
- …