9,418 research outputs found

    Dynamic simulation of an electrorheological fluid

    Get PDF
    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10^−4 to [infinity]. The effective viscosity of the suspension increases as Ma^−1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma^−1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected "snapshots" of the suspension microstructure. In particular, at small Ma, the suspension dynamics exhibit two distinct motions: a slow elastic-body-like deformation where electrostatic energy is stored, followed by a rapid microstructural rearrangement where energy is viscously dissipated. It is suggested that the observed dynamic yield stress is associated with these dynamics

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    Spacetime structure of static solutions in Gauss-Bonnet gravity: charged case

    Full text link
    We have studied spacetime structures of static solutions in the nn-dimensional Einstein-Gauss-Bonnet-Maxwell-Λ\Lambda system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient α\alpha is non-negative and 4α~/ℓ2≀14{\tilde \alpha}/\ell^2\leq 1 in order to define the relevant vacuum state. Solutions have the (n−2)(n-2)-dimensional Euclidean sub-manifold whose curvature is k=1, 0k=1,~0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of the spacetime. A branch singularity appears at the finite radius r=rb>0r=r_b>0 for any mass parameter. There the Kretschmann invariant behaves as O((r−rb)−3)O((r-r_b)^{-3}), which is much milder than divergent behavior of the central singularity in general relativity O(r−4(n−2))O(r^{-4(n-2)}). Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. Although there is a maximum mass for black hole solutions in the plus branch for k=−1k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=−1k=-1 and n≄6n\geq6 have an "inner" black hole, and inner and the "outer" black hole horizons. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.Comment: 20 pages, 10 figure

    Speech Communication

    Get PDF
    Contains reports on two research projects.National Science FoundationUnited States Air Force, Cambridge Research Center, Air Research and Development Command (Contract AF19(604)-6102

    Gravitational collapse from smooth initial data with vanishing radial pressure

    Full text link
    We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by the requirements based on physical reasonableness. A tangential pressure model is constructed and analyzed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapsedevelops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data is smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves.Comment: 10 pages,3 figures,revtex4,Revised Versio

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    Homothetic Wyman Spacetimes

    Get PDF
    The time-dependent, spherically symmetric, Wyman sector of the Unified Field Theory is shown to be equivalent to a self-gravitating scalar field with a positive-definite, repulsive self-interaction potential. A homothetic symmetry is imposed on the fundamental tensor, and the resulting autonomous system is numerically integrated. Near the critical point (between the collapsing and non-collapsing spacetimes) the system displays an approximately periodic alternation between collapsing and dispersive epochs.Comment: 15 pages with 6 figures; requires amsart, amssymb, amsmath, graphicx; formatted for publication in Int. J. Mod. Phys.
    • 

    corecore