11,258 research outputs found

    Numerical investigation of black hole interiors

    Get PDF
    Gravitational perturbations which are present in any realistic stellar collapse to a black hole, die off in the exterior of the hole, but experience an infinite blueshift in the interior. This is believed to lead to a slowly contracting lightlike scalar curvature singularity, characterized by a divergence of the hole's (quasi-local) mass function along the inner horizon. The region near the inner horizon is described to great accuracy by a plane wave spacetime. While Einstein's equations for this metric are still too complicated to be solved in closed form it is relatively simple to integrate them numerically. We find for generic regular initial data the predicted mass inflation type null singularity, rather than a spacelike singularity. It thus seems that mass inflation indeed represents a generic self-consistent picture of the black hole interior.Comment: 6 pages LaTeX, 3 eps figure

    Metal flame spray coating protects electrical cables in extreme environment

    Get PDF
    Metal flame spray coating prevents EMF measurement error in sheathed instrumentation cables which are externally attached to cylinders which were cooled on the inside, but exposed to gamma radiation on the outside. The coating provides a thermoconductive path for radiation induced high temperatures within the cables

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes

    Full text link
    Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to explain the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer

    Quasi-Spherical Light Cones of the Kerr Geometry

    Get PDF
    Quasi-spherical light cones are lightlike hypersurfaces of the Kerr geometry that are asymptotic to Minkowski light cones at infinity. We develop the equations of these surfaces and examine their properties. In particular, we show that they are free of caustics for all positive values of the Kerr radial coordinate r. Useful applications include the propagation of high-frequency waves, the definition of Kruskal-like coordinates for a spinning black hole and the characteristic initial-value problem.Comment: LaTeX, 14 pages, 2 figure

    Are HIV smartphone apps and online interventions fit for purpose?

    Get PDF
    Sexual health is an under-explored area of Human-Computer Interaction (HCI), particularly sexually transmitted infections such as HIV. Due to the stigma associated with these infections, people are often motivated to seek information online. With the rise of smartphone and web apps, there is enormous potential for technology to provide easily accessible information and resources. However, using online information raises important concerns about the trustworthiness of these resources and whether they are fit for purpose. We conducted a review of smartphone and web apps to investigate the landscape of currently available online apps and whether they meet the diverse needs of people seeking information on HIV online. Our functionality review revealed that existing technology interventions have a one-size-fits-all approach and do not support the breadth and complexity of HIV-related support needs. We argue that technology-based interventions need to signpost their offering and provide tailored support for different stages of HIV, including prevention, testing, diagnosis and management
    corecore