12,974 research outputs found

    Redshifts and Luminosities for 112 Gamma Ray Bursts

    Get PDF
    Two different luminosity indicators have recently been proposed for Gamma Ray Bursts that use gamma-ray observations alone. They relate the burst luminosity (L) with the time lag between peaks in hard and soft energies, and the spikiness or variability of the burst's light curve (V). These relations are currently justified and calibrated with only 6 or 7 bursts with known red shifts. We have examined BATSE data for the lag and V for 112 bursts. (1) A strong correlation between the lag and V exists, and it is exactly as predicted from the two proposed relations. This is proof that both luminosity indicators are reliable. (2) GRB830801 is the all-time brightest burst, yet with a small V and a large lag, and hence is likely the closest known event being perhaps as close as 3.2 Mpc. (3) We have combined the luminosities as derived from both indicators as a means to improve the statistical and systematic accuracy when compared with the accuracy from either method alone. The result is a list of 112 bursts with good luminosities and hence red shifts. (4) The burst averaged hardness ratio rises strongly with the luminosity of the burst. (5) The burst luminosity function is a broken power law, with the break at L = 2x10^{52} erg/s. The luminosity function has power law indices of -2.8+-0.2 above the break and -1.7+-0.1 below the break. (6) The number density of GRBs varies with red shift roughly as (1+z)^(2.5+-0.3) between 0.2<z<5. Excitingly, this result also provides a measure of the star formation rate out to z~5 with no effects from reddening, and the rate is rising uniformly for red shifts above 2.Comment: 13 pages, 4 figures, submitted to ApJLet

    Analysis of \u3cem\u3eBromus Inermis\u3c/em\u3e Populations Using Amplified Fragment Length Polymorphism Markers to Identify Duplicate Accessions

    Get PDF
    The temperate grass germplasm collection maintained at the USDA, ARS Western Regional Plant Introduction Station (WRPIS) in Pullman, Washington, consists of more than 18,000 accessions. Passport and collection data suggest that some of these accessions are duplicates, and their maintenance unnecessarily drains limited resources. The objective of this study was to use Amplified Fragment Length Polymorphism (AFLP) marker analysis on 4 populations of smooth bromegrass, Bromus inermis Leyss. subsp. inermis `Manchar ́, a cross-pollinated perennial grass, to determine if the genetic variation among them was significant. If not, then maintaining separate populations would be unnecessary

    An Assessment of Grass Regeneration Nurseries at the Western Regional Plant Introduction Station, 1994-1997

    Get PDF
    The Western Regional Plant Introduction Station (WRPIS), Pullman, WA, USA, maintains over 17,000 accessions of forage and turf grasses that are mostly wind cross-pollinated and highly heterogenic. Regeneration procedures have been refined over the past nine years to include improved isolation distance and increased plant populations for regeneration. The grass regeneration nurseries planted from 1994 through 1997 were evaluated using data recorded in the Germplasm Resources Information Network (GRIN) and it was found that approximately 78% of the regenerations were successful. Reasons for failures were contributed to inadequate plant number, presence of disease, seed shattering, and unsuitable growing environment. Several solutions have been identified and implemented

    Conservation of Grass Collections at the Western Regional Plant Introduction Station

    Get PDF
    Germplasm managers at the Western Regional Plant Introduction Station (WRPIS) have focused on improving seed regeneration in forage and turf grass species through studies of diversity maintenance, using isozyme markers in annual ryegrass (Lolium multiflorum Lam.) and through studies of pollen isolation, using strains of dominant pubescent and recessive glabrous smooth bromegrass (Bromus inermis Leyss.). Balanced samples of annual ryegrass (an equal number of seeds per plant) from field plots were best for maintaining allelic frequencies, but genetic diversity (heterozygosity and allelic richness) was maintained nearly as well in bulk samples (seeds proportionally assembled according to seeds per plant) during early regeneration cycles. In 1995, bromegrass marker plots integrated into WRPIS seed-regeneration nurseries at two locations resulted in average contamination of 4.2% at distances between 22 and 27 m. Diversity maintenance in early regeneration cycles and a relatively low level of pollen contamination appear possible in bulk samples and with modest isolation distances

    Sub-Kelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle

    Full text link
    Recent experiments have demonstrated the ability to optically cool a macroscopic mechanical oscillator to its quantum ground state by means of dynamic backaction. Such experiments allow quantum mechanics to be tested with mesoscopic objects, and represent an essential step toward quantum optical memories, transducers, and amplifiers. Most oscillators considered so far are rigidly connected to their thermal environment, fundamentally limiting their mechanical Q-factors and requiring cryogenic precooling to liquid helium temperatures. Here we demonstrate parametric feedback cooling of a laser-trapped nanoparticle which is entirely isolated from the thermal bath. The lack of a clamping mechanism provides robust decoupling from internal vibrations and makes it possible to cool the nanoparticle in all degrees of freedom by means of a single laser beam. Compared to laser-trapped microspheres, nanoparticles have the advantage of higher resonance frequencies and lower recoil heating, which are favorable conditions for quantum ground state coolin

    Fingerprints of Spin-Orbital Physics in Crystalline O2_2

    Full text link
    The alkali hyperoxide KO2_2 is a molecular analog of strongly-correlated systems, comprising of orbitally degenerate magnetic O2_2^- ions. Using first-principles electronic structure calculations, we set up an effective spin-orbital model for the low-energy \textit{molecular} orbitals and argue that many anomalous properties of KO2_2 replicate the status of its orbital system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl

    First-principle Wannier functions and effective lattice fermion models for narrow-band compounds

    Full text link
    We propose a systematic procedure for constructing effective lattice fermion models for narrow-band compounds on the basis of first-principles electronic structure calculations. The method is illustrated for the series of transition-metal (TM) oxides: SrVO3_3, YTiO3_3, V2_2O3_3, and Y2_2Mo2_2O7_7. It consists of three parts, starting from LDA. (i) construction of the kinetic energy Hamiltonian using downfolding method. (ii) solution of an inverse problem and construction of the Wannier functions (WFs) for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb interactions in the basis of \textit{auxiliary} WFs, for which the kinetic-energy term is set to be zero. The last step is necessary in order to avoid the double counting of the kinetic-energy term, which is included explicitly into the model. The screened Coulomb interactions are calculated in a hybrid scheme. First, we evaluate the screening caused by the change of occupation numbers and the relaxation of the LMTO basis functions, using the conventional constraint-LDA approach, where all matrix elements of hybridization involving the TM dd orbitals are set to be zero. Then, we switch on the hybridization and evaluate the screening associated with the change of this hybridization in RPA. The second channel of screening is very important, and results in a relatively small value of the effective Coulomb interaction for isolated t2gt_{2g} bands. We discuss details of this screening and consider its band-filling dependence, frequency dependence, influence of the lattice distortion, proximity of other bands, and the dimensionality of the model Hamiltonian.Comment: 35 pages, 25 figure

    Exact Dynamics of Multicomponent Bose-Einstein Condensates in Optical Lattices in One, Two and Three Dimensions

    Full text link
    Numerous exact solutions to the nonlinear mean-field equations of motion are constructed for multicomponent Bose-Einstein condensates on one, two, and three dimensional optical lattices. We find both stationary and nonstationary solutions, which are given in closed form. Among these solutions are a vortex-anti-vortex array on the square optical lattice and modes in which two or more components slosh back and forth between neighboring potential wells. We obtain a variety of solutions for multicomponent condensates on the simple cubic lattice, including a solution in which one condensate is at rest and the other flows in a complex three-dimensional array of intersecting vortex lines. A number of physically important solutions are stable for a range of parameter values, as we show by direct numerical integration of the equations of motion.Comment: 22 pages, 9 figure

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure
    corecore