12,974 research outputs found
Redshifts and Luminosities for 112 Gamma Ray Bursts
Two different luminosity indicators have recently been proposed for Gamma Ray
Bursts that use gamma-ray observations alone. They relate the burst luminosity
(L) with the time lag between peaks in hard and soft energies, and the
spikiness or variability of the burst's light curve (V). These relations are
currently justified and calibrated with only 6 or 7 bursts with known red
shifts. We have examined BATSE data for the lag and V for 112 bursts. (1) A
strong correlation between the lag and V exists, and it is exactly as predicted
from the two proposed relations. This is proof that both luminosity indicators
are reliable. (2) GRB830801 is the all-time brightest burst, yet with a small V
and a large lag, and hence is likely the closest known event being perhaps as
close as 3.2 Mpc. (3) We have combined the luminosities as derived from both
indicators as a means to improve the statistical and systematic accuracy when
compared with the accuracy from either method alone. The result is a list of
112 bursts with good luminosities and hence red shifts. (4) The burst averaged
hardness ratio rises strongly with the luminosity of the burst. (5) The burst
luminosity function is a broken power law, with the break at L = 2x10^{52}
erg/s. The luminosity function has power law indices of -2.8+-0.2 above the
break and -1.7+-0.1 below the break. (6) The number density of GRBs varies with
red shift roughly as (1+z)^(2.5+-0.3) between 0.2<z<5. Excitingly, this result
also provides a measure of the star formation rate out to z~5 with no effects
from reddening, and the rate is rising uniformly for red shifts above 2.Comment: 13 pages, 4 figures, submitted to ApJLet
Analysis of \u3cem\u3eBromus Inermis\u3c/em\u3e Populations Using Amplified Fragment Length Polymorphism Markers to Identify Duplicate Accessions
The temperate grass germplasm collection maintained at the USDA, ARS Western Regional Plant Introduction Station (WRPIS) in Pullman, Washington, consists of more than 18,000 accessions. Passport and collection data suggest that some of these accessions are duplicates, and their maintenance unnecessarily drains limited resources. The objective of this study was to use Amplified Fragment Length Polymorphism (AFLP) marker analysis on 4 populations of smooth bromegrass, Bromus inermis Leyss. subsp. inermis `Manchar ́, a cross-pollinated perennial grass, to determine if the genetic variation among them was significant. If not, then maintaining separate populations would be unnecessary
An Assessment of Grass Regeneration Nurseries at the Western Regional Plant Introduction Station, 1994-1997
The Western Regional Plant Introduction Station (WRPIS), Pullman, WA, USA, maintains over 17,000 accessions of forage and turf grasses that are mostly wind cross-pollinated and highly heterogenic. Regeneration procedures have been refined over the past nine years to include improved isolation distance and increased plant populations for regeneration. The grass regeneration nurseries planted from 1994 through 1997 were evaluated using data recorded in the Germplasm Resources Information Network (GRIN) and it was found that approximately 78% of the regenerations were successful. Reasons for failures were contributed to inadequate plant number, presence of disease, seed shattering, and unsuitable growing environment. Several solutions have been identified and implemented
Conservation of Grass Collections at the Western Regional Plant Introduction Station
Germplasm managers at the Western Regional Plant Introduction Station (WRPIS) have focused on improving seed regeneration in forage and turf grass species through studies of diversity maintenance, using isozyme markers in annual ryegrass (Lolium multiflorum Lam.) and through studies of pollen isolation, using strains of dominant pubescent and recessive glabrous smooth bromegrass (Bromus inermis Leyss.). Balanced samples of annual ryegrass (an equal number of seeds per plant) from field plots were best for maintaining allelic frequencies, but genetic diversity (heterozygosity and allelic richness) was maintained nearly as well in bulk samples (seeds proportionally assembled according to seeds per plant) during early regeneration cycles. In 1995, bromegrass marker plots integrated into WRPIS seed-regeneration nurseries at two locations resulted in average contamination of 4.2% at distances between 22 and 27 m. Diversity maintenance in early regeneration cycles and a relatively low level of pollen contamination appear possible in bulk samples and with modest isolation distances
Sub-Kelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle
Recent experiments have demonstrated the ability to optically cool a
macroscopic mechanical oscillator to its quantum ground state by means of
dynamic backaction. Such experiments allow quantum mechanics to be tested with
mesoscopic objects, and represent an essential step toward quantum optical
memories, transducers, and amplifiers. Most oscillators considered so far are
rigidly connected to their thermal environment, fundamentally limiting their
mechanical Q-factors and requiring cryogenic precooling to liquid helium
temperatures. Here we demonstrate parametric feedback cooling of a
laser-trapped nanoparticle which is entirely isolated from the thermal bath.
The lack of a clamping mechanism provides robust decoupling from internal
vibrations and makes it possible to cool the nanoparticle in all degrees of
freedom by means of a single laser beam. Compared to laser-trapped
microspheres, nanoparticles have the advantage of higher resonance frequencies
and lower recoil heating, which are favorable conditions for quantum ground
state coolin
Fingerprints of Spin-Orbital Physics in Crystalline O
The alkali hyperoxide KO is a molecular analog of strongly-correlated
systems, comprising of orbitally degenerate magnetic O ions. Using
first-principles electronic structure calculations, we set up an effective
spin-orbital model for the low-energy \textit{molecular} orbitals and argue
that many anomalous properties of KO replicate the status of its orbital
system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
Exact Dynamics of Multicomponent Bose-Einstein Condensates in Optical Lattices in One, Two and Three Dimensions
Numerous exact solutions to the nonlinear mean-field equations of motion are
constructed for multicomponent Bose-Einstein condensates on one, two, and three
dimensional optical lattices. We find both stationary and nonstationary
solutions, which are given in closed form. Among these solutions are a
vortex-anti-vortex array on the square optical lattice and modes in which two
or more components slosh back and forth between neighboring potential wells. We
obtain a variety of solutions for multicomponent condensates on the simple
cubic lattice, including a solution in which one condensate is at rest and the
other flows in a complex three-dimensional array of intersecting vortex lines.
A number of physically important solutions are stable for a range of parameter
values, as we show by direct numerical integration of the equations of motion.Comment: 22 pages, 9 figure
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
- …