414 research outputs found

    Investigating design issues of context-aware mobile guides for people with visual impairments

    Get PDF
    While mobile wayfinding systems for visually impaired people offer huge potential, most insufficiently address the differences between visual impairments and contextual environments, and offer very little context-awareness - usability issues of which are vital in supporting independent mobility. Participants experiencing a loss of central vision, loss of peripheral vision, and total vision loss made up three groups. Our multidisciplinary model of context was used to design a user study, which involved asking participants to walk to pre-determined outdoor and indoor landmarks. Significant differences were found between groups relating to information requirements, and the environmental cues encoded and used to orientate and navigate. The study also found differences between indoor and outdoor contexts. It was concluded that what is meaningful to one form of visual impairment is incidental to another. These issues need to be captured and accounted for if wayfinding systems are to be usable

    Towards a multidisciplinary user-centric design framework for context-aware applications

    Get PDF
    The primary aim of this article is to review and merge theories of context within linguistics, computer science, and psychology, to propose a multidisciplinary model of context that would facilitate application developers in developing richer descriptions or scenarios of how a context-aware device may be used in various dynamic mobile settings. More specifically, the aim is to:1. Investigate different viewpoints of context within linguistics, computer science, and psychology, to develop summary condensed models for each discipline. 2. Investigate the impact of contrasting viewpoints on the usability of context-aware applications. 3. Investigate the extent to which single-discipline models can be merged and the benefits and insightfulness of a merged model for designing mobile computers. 4. Investigate the extent to which a proposed multidisciplinary modelcan be applied to specific applications of context-aware computing

    Towards a user-centric and multidisciplinary framework for designing context-aware applications

    Get PDF
    Research into context-aware computing has not sufficiently addressed human and social aspects of design. Existing design frameworks are predominantly software orientated, make little use of cross-disciplinary work, and do not provide an easily transferable structure for cross-application of design principles. To address these problems, this paper proposes a multidisciplinary and user-centred design framework, and two models of context, which derive from conceptualisations within Psychology, Linguistics, and Computer Science. In a study, our framework was found to significantly improve the performance of postgraduate students at identifying the context of the user and application, and the usability issues that arise

    Investigating context-aware clues to assist navigation for visually impaired people

    Get PDF
    It is estimated that 7.4 million people in Europe are visually impaired [1]. Limitations of traditional mobility aids (i.e. white canes and guide dogs) coupled with a proliferation of context-aware technologies (e.g. Electronic Travel Aids, Global Positioning Systems and Geographical Information Systems), have stimulated research and development into navigational systems for the visually impaired. However, current research appears very technology focused, which has led to an insufficient appreciation of Human Computer Interaction, in particular task/requirements analysis and notions of contextual interactions. The study reported here involved a smallscale investigation into how visually impaired people interact with their environmental context during micro-navigation (through immediate environment) and/or macro-navigation (through distant environment) on foot. The purpose was to demonstrate the heterogeneous nature of visually impaired people in interaction with their environmental context. Results from a previous study involving sighted participants were used for comparison. Results revealed that when describing a route, visually impaired people vary in their use of different types of navigation clues - both as a group, when compared with sighted participants, and as individuals. Usability implications and areas for further work are identified and discussed

    A pathway to independence : wayfinding systems which adapt to a visually impaired person's context

    Get PDF
    Despite an increased amount of technologies and systems designed to address the navigational requirements of the visually impaired community of approximately 7.4 million in Europe, current research has failed to sufficiently address the human issues associated to their design and use. As more types of sensing technologies are developed to facilitate visually impaired travellers for different navigational purposes (local vs. distant and indoor vs. outdoor), an effective process of synchronisation is required. This synchronisation is represented through context-aware computing, which allows contextual information to not just be sensed (like most current wayfinding systems), but also adapted, discovered and augmented. In this paper, three user studies concerning the suitability of different types of navigational information for visually impaired and sighted people are described. For such systems to be effective, human cognitive maps, models and intentions need to be the focus of further research, in order to provide information that is tailored to a user's task, situation or environment. Methodologies aimed at establishing these issues need to be demonstrated through a multidisciplinary framework

    Toward a multidisciplinary model of context to support context-aware computing

    Get PDF
    Capturing, defining, and modeling the essence of context are challenging, compelling, and prominent issues for interdisciplinary research and discussion. The roots of its emergence lie in the inconsistencies and ambivalent definitions across and within different research specializations (e.g., philosophy, psychology, pragmatics, linguistics, computer science, and artificial intelligence). Within the area of computer science, the advent of mobile context-aware computing has stimulated broad and contrasting interpretations due to the shift from traditional static desktop computing to heterogeneous mobile environments. This transition poses many challenging, complex, and largely unanswered research issues relating to contextual interactions and usability. To address those issues, many researchers strongly encourage a multidisciplinary approach. The primary aim of this article is to review and unify theories of context within linguistics, computer science, and psychology. Summary models within each discipline are used to propose an outline and detailed multidisciplinary model of context involving (a) the differentiation of focal and contextual aspects of the user and application's world, (b) the separation of meaningful and incidental dimensions, and (c) important user and application processes. The models provide an important foundation in which complex mobile scenarios can be conceptualized and key human and social issues can be identified. The models were then applied to different applications of context-aware computing involving user communities and mobile tourist guides. The authors' future work involves developing a user-centered multidisciplinary design framework (based on their proposed models). This will be used to design a large-scale user study investigating the usability issues of a context-aware mobile computing navigation aid for visually impaired people

    A Practical Approach to the Assessment and Management of Psychiatric Emergencies

    Get PDF
    Patients present to the psychiatric emergency room manifesting a wide variety of symptoms ranging from mild anxiety to violent, uncontrollable behavior. The emergency room psychiatrist must recognize these various presentations and provide appropriate interventions for such patients. It may not be of the utmost importance to distinguish between the subtypes of schizophrenia or endogenous vs. exogenous depression, just as it is not crucial to decide immediately the cause of an acute abdomen, primarily to recognize its presence. However, it is critical to recognize the presence of a psychosis, suicidal intent or the presence of an organically caused alteration in mental status. These are, in essence triage decisions. In fact, the concordance rate between emergency room and final diagnoses other than alcoholism is no higher than 62% (1). According to Bassuk (2), the immediate goal of any emergency evaluation is to identify and manage life-threatening or potentially life-threatening problems, including out-of-control behaviors, serious and chronic self-neglect and severe medical problems either co-existing with or causing psychiatric symptoms. The psychiatrist must have acute management strategies and disposition decisions in mind so that within the initial phases of the interview, impressions regarding the need for restraint and/or psychoactive medication can be put into action. In less emergent situations or after appropriate measures have been taken to ensure safety and control, more time can be devoted toward a complete evaluation

    Momentum flux density, kinetic energy density and their fluctuations for one-dimensional confined gases of non-interacting fermions

    Full text link
    We present a Green's function method for the evaluation of the particle density profile and of the higher moments of the one-body density matrix in a mesoscopic system of N Fermi particles moving independently in a linear potential. The usefulness of the method is illustrated by applications to a Fermi gas confined in a harmonic potential well, for which we evaluate the momentum flux and kinetic energy densities as well as their quantal mean-square fluctuations. We also study some properties of the kinetic energy functional E_{kin}[n(x)] in the same system. Whereas a local approximation to the kinetic energy density yields a multi-valued function, an exact single-valued relationship between the density derivative of E_{kin}[n(x)] and the particle density n(x) is demonstrated and evaluated for various values of the number of particles in the system.Comment: 10 pages, 5 figure

    Revealing microhabitat requirements of an endangered specialist lizard with LiDAR

    Get PDF
    A central principle of threatened species management is the requirement for detailed understanding of species habitat requirements. Difficult terrain or cryptic behaviour can, however, make the study of habitat or microhabitat requirements difficult, calling for innovative data collection techniques. We used high-resolution terrestrial LiDAR imaging to develop three-dimensional models of log piles, quantifying the structural characteristics linked with occupancy of an endangered cryptic reptile, the western spiny-tailed skink (Egernia stokesii badia). Inhabited log piles were generally taller with smaller entrance hollows and a wider main log, had more high-hanging branches, fewer low-hanging branches, more mid- and understorey cover, and lower maximum canopy height. Significant characteristics linked with occupancy were longer log piles, an average of three logs, less canopy cover, and the presence of overhanging vegetation, likely relating to colony segregation, thermoregulatory requirements, and foraging opportunities. In addition to optimising translocation site selection, understanding microhabitat specificity of E. s. badia will help inform a range of management objectives, such as targeted monitoring and invasive predator control. There are also diverse opportunities for the application of this technology to a wide variety of future ecological studies and wildlife management initiatives pertaining to a range of cryptic, understudied taxa

    Violation of self-similarity in the expansion of a 1D Bose gas

    Get PDF
    The expansion of a 1D Bose gas is investigated employing the Lieb-Liniger equation of state within the local density approximation. We show that during the expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a simple scaling Ansatz. We carry out a variational calculation, which recovers the numerical results for the expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the mean field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the expansion violates self-similarity.Comment: 6 pages, 5 eps figure
    • 

    corecore