15,511 research outputs found
Construction of Wannier functions from localized atomic-like orbitals
The problem of construction of the Wannier functions (WFs) in a restricted
Hilbert space of eigenstates of the one-electron Hamiltonian (forming
the so-called low-energy part of the spectrum) can be formulated in several
different ways. One possibility is to use the projector-operator techniques,
which pick up a set of trial atomic orbitals and project them onto the given
Hilbert space. Another possibility is to employ the downfolding method, which
eliminates the high-energy part of the spectrum and incorporates all related to
it properties into the energy-dependence of an effective Hamiltonian. We show
that by modifying the high-energy part of the spectrum of the original
Hamiltonian , which is rather irrelevant to the construction of WFs in
the low-energy part of the spectrum, these two methods can be formulated in an
absolutely exact and identical form, so that the main difference between them
is reduced to the choice of the trial orbitals. Concerning the latter part of
the problem, we argue that an optimal choice for trial orbitals can be based on
the maximization of the site-diagonal part of the density matrix. The main idea
is illustrated for a simple toy model, consisting of only two bands, as well as
for a more realistic example of bands in VO. An analogy with
the search of the ground state of a many-electron system is also discussed.Comment: 13 pages, 6 figure
Measuring the quantum statistics of an atom laser beam
We propose and analyse a scheme for measuring the quadrature statistics of an
atom laser beam using extant optical homodyning and Raman atom laser
techniques. Reversal of the normal Raman atom laser outcoupling scheme is used
to map the quantum statistics of an incoupled beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman
incoupler gives a clear signal of de Broglie wave quadrature squeezing for both
pulsed and continuous inputs. Finally, we show that experimental realisations
of the scheme may be tested with existing methods via measurements of Glauber's
intensity correlation function.Comment: 4 pages, 3 figure
Analysis of \u3cem\u3eBromus Inermis\u3c/em\u3e Populations Using Amplified Fragment Length Polymorphism Markers to Identify Duplicate Accessions
The temperate grass germplasm collection maintained at the USDA, ARS Western Regional Plant Introduction Station (WRPIS) in Pullman, Washington, consists of more than 18,000 accessions. Passport and collection data suggest that some of these accessions are duplicates, and their maintenance unnecessarily drains limited resources. The objective of this study was to use Amplified Fragment Length Polymorphism (AFLP) marker analysis on 4 populations of smooth bromegrass, Bromus inermis Leyss. subsp. inermis `Manchar Ì, a cross-pollinated perennial grass, to determine if the genetic variation among them was significant. If not, then maintaining separate populations would be unnecessary
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
Symmetry-based approach to electron-phonon interactions in graphene
We use the symmetries of monolayer graphene to write a set of constraints
that must be satisfied by any electron-phonon interaction hamiltonian. The
explicit solution as a series expansion in the momenta gives the most general,
model-independent couplings between electrons and long wavelength acoustic and
optical phonons. As an application, the possibility of describing elastic
strains in terms of effective electromagnetic fields is considered in detail,
with an emphasis on group theory conditions and the role of time reversal
symmetry.Comment: 11 pages, 1 figure. Treatment of ripples in suspended graphene sheets
included. Revised journal version with improved presentation and two new
appendice
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
Fingerprints of Spin-Orbital Physics in Crystalline O
The alkali hyperoxide KO is a molecular analog of strongly-correlated
systems, comprising of orbitally degenerate magnetic O ions. Using
first-principles electronic structure calculations, we set up an effective
spin-orbital model for the low-energy \textit{molecular} orbitals and argue
that many anomalous properties of KO replicate the status of its orbital
system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl
Computational Topology Techniques for Characterizing Time-Series Data
Topological data analysis (TDA), while abstract, allows a characterization of
time-series data obtained from nonlinear and complex dynamical systems. Though
it is surprising that such an abstract measure of structure - counting pieces
and holes - could be useful for real-world data, TDA lets us compare different
systems, and even do membership testing or change-point detection. However, TDA
is computationally expensive and involves a number of free parameters. This
complexity can be obviated by coarse-graining, using a construct called the
witness complex. The parametric dependence gives rise to the concept of
persistent homology: how shape changes with scale. Its results allow us to
distinguish time-series data from different systems - e.g., the same note
played on different musical instruments.Comment: 12 pages, 6 Figures, 1 Table, The Sixteenth International Symposium
on Intelligent Data Analysis (IDA 2017
Violence against female sex workers in Karnataka state, south India: impact on health, and reductions in violence following an intervention program.
ABSTRACT: BACKGROUND: Violence against female sex workers (FSWs) can impede HIV prevention efforts and contravenes their human rights. We developed a multi-layered violence intervention targeting policy makers, secondary stakeholders (police, lawyers, media), and primary stakeholders (FSWs), as part of wider HIV prevention programming involving >60,000 FSWs in Karnataka state. This study examined if violence against FSWs is associated with reduced condom use and increased STI/HIV risk, and if addressing violence against FSWs within a large-scale HIV prevention program can reduce levels of violence against them. METHODS: FSWs were randomly selected to participate in polling booth surveys (PBS 2006-2008; short behavioural questionnaires administered anonymously) and integrated behavioural-biological assessments (IBBAs 2005-2009; administered face-to-face). RESULTS: 3,852 FSWs participated in the IBBAs and 7,638 FSWs participated in the PBS. Overall, 11.0% of FSWs in the IBBAs and 26.4% of FSWs in the PBS reported being beaten or raped in the past year. FSWs who reported violence in the past year were significantly less likely to report condom use with clients (zero unprotected sex acts in previous month, 55.4% vs. 75.5%, adjusted odds ratio (AOR) 0.4, 95% confidence interval (CI) 0.3 to 0.5, p < 0.001); to have accessed the HIV intervention program (ever contacted by peer educator, 84.9% vs. 89.6%, AOR 0.7, 95% CI 0.4 to 1.0, p = 0.04); or to have ever visited the project sexual health clinic (59.0% vs. 68.1%, AOR 0.7, 95% CI 0.6 to 1.0, p = 0.02); and were significantly more likely to be infected with gonorrhea (5.0% vs. 2.6%, AOR 1.9, 95% CI 1.1 to 3.3, p = 0.02). By the follow-up surveys, significant reductions were seen in the proportions of FSWs reporting violence compared with baseline (IBBA 13.0% vs. 9.0%, AOR 0.7, 95% CI 0.5 to 0.9 p = 0.01; PBS 27.3% vs. 18.9%, crude OR 0.5, 95% CI 0.4 to 0.5, p < 0.001). CONCLUSIONS: This program demonstrates that a structural approach to addressing violence can be effectively delivered at scale. Addressing violence against FSWs is important for the success of HIV prevention programs, and for protecting their basic human rights
- âŠ