34 research outputs found

    The exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus)

    Get PDF
    The complexity of the nonvisual photoreception systems in teleosts has just started to be appreciated, with colocalization of multiple photoreceptor types with unresolved functions. Here we describe an intricate expression pattern of melanopsins in early life stages of the marine flat fish Atlantic halibut (Hippoglossus hippoglossus), a period when the unpigmented brain is directly exposed to environmental photons. We show a refined and extensive expression of melanopsins in the halibut brain already at the time of hatching, long before the eyes are functional. We detect melanopsin in the habenula, suprachiasmatic nucleus, dorsal thalamus, and lateral tubular nucleus of first feeding larvae, suggesting conserved functions of the melanopsins in marine teleosts. The complex expression of melanopsins already at larval stages indicates the importance of nonvisual photoreception early in development. Most strikingly, we detect expression of both exorhodopsin and melanopsin in the pineal complex of halibut larvae. Double-fluorescence labeling showed that two clusters of melanopsin-positive cells are located lateral to the central rosette of exorhodopsin-positive cells. The localization of different photopigments in the pineal complex suggests that two parallel photoreceptor systems may be active. Furthermore, the dispersed melanopsin-positive cells in the spinal cord of halibut larvae at the time of hatching may be primary sensory cells or interneurons representing the first example of dispersed high-order photoreceptor cells. The appearance of nonvisual opsins early in the development of halibut provides an alternative model for studying the evolution and functional significance of nonvisual opsins.acceptedVersio

    Predicting dark respiration rates of wheat leaves from hyperspectral reflectance

    Get PDF
    Greater availability of leaf dark respiration (R dark) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of R dark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non‐destructive and high‐throughput method of estimating R dark from leaf hyperspectral reflectance data that was derived from leaf R dark measured by a destructive high‐throughput oxygen consumption technique. We generated a large dataset of leaf R dark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for R dark. Leaf R dark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among individual plants, whereas traits known to scale with R dark, leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf R dark, N, and LMA with r 2 values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of 17–18% for R dark and 7–12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf R dark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of R dark are discussed

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial

    Get PDF
    Background: Late onset neonatal sepsis (LOS) with the mortality of 17 to 27% is still a serious disease. Meropenem is an antibiotic with wide antibacterial coverage. The advantage of it over standard of care could be its wider antibacterial coverage and thus the use of mono-instead of combination therapy.Methods: NeoMero-1, an open label, randomised, comparator controlled, superiority trial aims to compare the efficacy of meropenem with a predefined standard of care (ampicillin + gentamicin or cefotaxime + gentamicin) in the treatment of LOS in neonates and infants aged less than 90 days admitted to a neonatal intensive care unit. A total of 550 subjects will be recruited following a 1:1 randomisation scheme. The trial includes patients with culture confirmed (at least one positive culture from normally sterile site except coagulase negative staphylococci in addition to one clinical or laboratory criterion) or clinical sepsis (at least two laboratory and two clinical criteria suggestive of LOS in subjects with postmenstrual age = 44 weeks). Meropenem will be given at a dose of 20 mg/kg q12h or q8h depending on the gestational- and postnatal age. Comparator agents are administered as indicated in British National Formulary for Children. The primary endpoint measured at the test of cure visit (2 days after end of study therapy) is graded to success (all baseline symptoms and laboratory parameters are resolved or improved with no need to continue antibiotics and the baseline microorganisms are eradicated and no new microorganisms are identified and the patient has received allocated treatment for 11 +/- 3 days with no modification) or a failure (all remaining cases). Secondary outcome measures include comparison of survival, relapse rates or new infections by Day 28, clinical response at Day 3 and end of therapy, duration of hospitalisation, population pharmacokinetic analysis of meropenem and effect of antibiotics on mucosal colonisation and development of antibacterial resistance. The study will start recruitment in September 2011; the total duration is of 24 months

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Are Books Like Number Lines? Children Spontaneously Encode Spatial-Numeric Relationships in a Novel Spatial Estimation Task

    No full text
    Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, “Can you find page X?” Children’s precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children’s numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children’s accuracy on these tasks was correlated with their number line PAE. Children’s number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children’s estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children’s magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children’s magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games
    corecore