77 research outputs found

    Rates of ethanol metabolism decrease in sons of alcoholics following a priming dose of ethanol

    Get PDF
    Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (FHP) were compared to 15 young men without a family history of alcoholism (FHN). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.85 g/kg) and then, several hours later, a second dose (0.3 g/kg), and the two rates were compared. The two groups of subjects were similar in their histories of ethanol consumption. FHP subjects demonstrated faster initial rates of ethanol metabolism, 148 ± 36 mg/kg/hr, compared to FHN subjects, 124 ± 18 mg/kg/hr, p=.01. However, FHN subjects increased their rate of metabolism by 10 ± 27 percent compared to a decrease of -15 ± 24 percent in FHP subjects, p =.007. Fifty-two percent of the FHP and none of the FHN subjects exhibited a decline in metabolic rate of 20% or more, p=.0008. Since a significant proportion of FHP subjects exhibited a decrease in the second rate of ethanol metabolism, these preliminary data might help to partly explain why FHP individuals differ in their sensitivity to ethanol and are more likely to develop alcohol dependence

    CD14 mediates the innate immune responses to arthritopathogenic peptidoglycan–polysaccharide complexes of Gram-positive bacterial cell walls

    Get PDF
    Bacterial infections play an important role in the multifactorial etiology of rheumatoid arthritis. The arthropathic properties of Gram-positive bacteria have been associated with peptidoglycan–polysaccharide complexes (PG-PS), which are major structural components of bacterial cell walls. There is little agreement as to the identity of cellular receptors that mediate innate immune responses to PG-PS. A glycosylphosphatidylinositol-linked cell surface protein, CD14, the lipopolysaccharide receptor, has been proposed as a PG-PS receptor, but contradictory data have been reported. Here, we examined the inflammatory and pathogenic responses to PG-PS in CD14 knockout mice in order to examine the role for CD14 in PG-PS-induced signaling. We found that PG-PS-induced responses in vitro, including transient increase in intracellular calcium, activation of nuclear factor-κB, and secretion of the cytokines tumor necrosis factor-α and interleukin-6, were all strongly inhibited in CD14 knockout macrophages. In vivo, the incidence and severity of PG-PS induced acute polyarthritis were significantly reduced in CD14 knockout mice as compared with their wild-type counterparts. Consistent with these findings, CD14 knockout mice had significantly inhibited inflammatory cell infiltration and synovial hyperplasia, and reduced expression of inflammatory cytokines in PG-PS arthritic joints. These results support an essential role for CD14 in the innate immune responses to PG-PS and indicate an important role for CD14 in PG-PS induced arthropathy

    Time-course comparison of xenobiotic activators of CAR and PPARα in mouse liver

    Get PDF
    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)α are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARα will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 hrs, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPARα. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPARα in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens

    Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease

    Get PDF
    Metabolomic evaluation of urine and liver was conducted to assess the biochemical changes that occur as a result of alcohol-induced liver injury. Male C57BL/6J mice were fed an isocaloric control-or alcohol-containing liquid diet with 35% of calories from corn oil, 18% protein and 47% carbohydrate/alcohol for up to 36 days ad libitum. Alcohol treatment was initiated at 7 g/kg/day and gradually reached a final dose of 21 g/kg/day. Urine samples were collected at 22, 30 and 36 days and in additional treatment groups, liver and serum samples were harvested at 28 days. Steatohepatitis was induced in the alcohol-fed group since a 5-fold increase in serum alanine aminotransferase activity, a 6-fold increase in liver injury score (necrosis, inflammation and steatosis) and an increase in lipid peroxidation in liver were observed. Liver and urine samples were analyzed by nuclear magnetic resonance spectroscopy and electrospray infusion/Fourier transform ion cyclotron resonance-mass spectrometry. In livers of alcohol-treated mice the following changes were noted. Hypoxia and glycolysis were activated as evidenced by elevated levels of alanine and lactate. Tyrosine, which is required for L-DOPA and dopamine as well as thyroid hormones, was elevated possibly reflecting alterations of basal metabolism by alcohol. A 4-fold increase in the prostacyclin inhibitor 7,10,13,16-docosatetraenoic acid, a molecule important for regulation of platelet formation and blood clotting, may explain why chronic drinking causes serious bleeding problems. Metabolomic analysis of the urine revealed that alcohol treatment leads to decreased excretion of taurine, a metabolite of glutathione, and an increase in lactate, n-acetylglutamine and n-acetylglycine. Changes in the latter two metabolites suggest an inhibition of the kidney enzyme aminoacylase I and may be useful as markers for alcohol consumption

    Overexpression of Manganese Superoxide Dismutase Prevents Alcohol-induced Liver Injury in the Rat

    Get PDF
    Mitochondria are thought to play a major role in hepatic oxidative stress associated with alcohol-induced liver injury. Thus, the hypothesis that delivery of the mitochondrial isoform of superoxide dismutase (Mn-SOD) via recombinant adenovirus would reduce alcohol-induced liver injury was tested. Rats were given recombinant adenovirus containing Mn-SOD (Ad.SOD2) or beta-galactosidase (Ad.lacZ) and then fed alcohol enterally for 4 weeks. Mn-SOD expression and activity of Ad.SOD2 in liver mitochondria of infected animals was increased nearly 3-fold compared with Ad.lacZ-infected controls. Mitochondrial glutathione levels in Ad.lacZ-infected animals were decreased after 4 weeks of chronic ethanol, as expected, but were unchanged in Ad.SOD2-infected animals. Alanine aminotransferase was elevated significantly by ethanol, an effect that was prevented by Ad.SOD2. Moreover, pathology (e.g. the sum of steatosis, inflammation, and necrosis) was elevated dramatically by ethanol in Ad.lacZ-treated rats. This effect was also blunted in animals infected with Ad.SOD2. Neutrophil infiltration was increased about 3-fold in livers from both Ad.lacZ- and Ad.SOD2-infected rats by ethanol treatment. Moreover, ESR-detectable free radical adducts in bile were increased about 8-fold by ethanol. Using (13)C-labeled ethanol, it was determined that nearly 60% of total adducts were due to the alpha-hydroxyethyl radical adduct. This increase in radical formation was blocked completely by Ad.SOD2 infection. Furthermore, apoptosis of hepatocytes was increased about 5-fold by ethanol, an effect also blocked by Ad.SOD2. Interestingly, tumor necrosis factor-alpha mRNA was elevated to the same extent in both Ad.lacZ- and Ad.SOD2-infected animals follows ethanol exposure. These data suggest that hepatocyte mitochondrial oxidative stress is involved in alcohol-induced liver damage and likely follows Kupffer cell activation, cytokine production, and neutrophil infiltration. These results also support the hypothesis that mitochondrial oxidant production is a critical factor in parenchymal cell death caused by alcohol

    Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    Get PDF
    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocelluar hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47phox-null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell- to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47phox-null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 wk, or 4 wks. WY-14,643-induced gene expression in p47phox-null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase-dependent events, while detectable following acute treatment, are transient and short-lived. To the contrary, a strong PPARα-specific gene signature was evident in mice that were continually exposed to WY-14,643

    Glycine reduces platelet aggregation

    Get PDF
    It has been demonstrated that a wide variety of white blood cells and macrophages (i.e. Kupffer cells, alveolar and peritoneal macrophages and neutrophils) contain glycine-gated chloride channels. Binding of glycine on the receptor stimulates Cl− influx causing membrane hyperpolarization that prevents agonist-induced influx of calcium. Since platelet-aggregation is calcium-dependent, this study was designed to test the hypothesis that glycine would inhibit platelet aggregation. Rats were fed diets rich of glycine for 5 days, while controls received isonitrogenous valine. The bleeding time and ADP- and collagen-induced platelet aggregation were measured. Dietary glycine significantly increased bleeding time about two fold compared to valine-treated controls. Furthermore, the amplitude of platelet aggregation stimulated with ADP or collagen was significantly decreased in whole blood drawn from rats fed 2.5 or 5 % dietary glycine by over 50 %. Addition of glycine in vitro (1–10 mM) also blunted rat platelet aggregation in a dose-dependent manner. Strychnine, a glycine receptor antagonist, abrogated the inhibitory effect of glycine on platelet-aggregation in vitro suggesting the glycine works via a glycine receptor. Glycine also blunted aggregation of human platelets. Further, the glycine receptor was detected in both rat and human platelets by western blotting. Based on these data, it is concluded that glycine prevents aggregation of platelets in a dose-dependent manner via mechanisms involving a glycine receptor

    Comparative Analysis of the Relationship Between Trichloroethylene Metabolism and Tissue-Specific Toxicity Among Inbred Mouse Strains: Kidney Effects

    Get PDF
    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent

    Comparative Analysis of the Relationship Between Trichloroethylene Metabolism and Tissue-Specific Toxicity Among Inbred Mouse Strains: Liver Effects

    Get PDF
    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE

    Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice

    Get PDF
    Viral hepatitis and aflatoxin B1 (AFB1) exposure are common risk factors for hepatocellular carcinoma (HCC). The incidence of HCC in individuals co-exposed to hepatitis C (HCV) or B virus and AFB1 is greater than could be explained by the additive effect, yet the mechanisms are poorly understood due to lack of an animal model. This study investigated the outcomes and mechanisms of combined exposure to HCV and AFB1. We hypothesized that HCV transgenic (HCV-Tg; expressing core, E1, E2, and p7, nucleotides 342–2771) mice will be prone to hepatocarcinogenesis when exposed to AFB1. Neonatal (7 days old) HCV-Tg or C57BL/6J wild-type mice were exposed to AFB1 (6 μg/g bw) or tricaprylin vehicle (15 μl/g bw) and male offspring were followed for up to 12 months. No liver lesions were observed in vehicle-treated wild type or HCV-Tg mice. Tumors (adenomas or carcinomas) and preneoplastic lesions (hyperplasia or foci) were observed in 22.5% (9 of 40) of AFB1-treated wild-type mice. In HCV-Tg, the incidence of tumorous or pre-tumorous lesions was significantly elevated (50%, 18 of 36), with the difference largely due to a 2.5-fold increase in the incidence of adenomas (30.5% vs 12.5%). While oxidative stress and steato-hepatisis were observed in both AFB1-treated groups, molecular changes indicative of the enhanced inflammatory response and altered lipid metabolism were more pronounced in HCV-Tg mice. In summary, HCV proteins core, E1, E2 and p7 are sufficient to reproduce the co-carcinogenic effect of HCV and AFB1 which is a known clinical phenomenon
    corecore