336 research outputs found

    6D Muon Ionization Cooling with an Inverse Cyclotron

    Full text link
    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.Comment: Five pages. LaTeX, three postscript figure files. To appear in the AIP Conference Proceedings for COOL05: International Workshop on Beam Cooling, Galena, IL, 18-23 Sept. 200

    Stimulated Raman spin coherence and spin-flip induced hole burning in charged GaAs quantum dots

    Full text link
    High-resolution spectral hole burning (SHB) in coherent nondegenerate differential transmission spectroscopy discloses spin-trion dynamics in an ensemble of negatively charged quantum dots. In the Voigt geometry, stimulated Raman spin coherence gives rise to Stokes and anti-Stokes sidebands on top of the trion spectral hole. The prominent feature of an extremely narrow spike at zero detuning arises from spin population pulsation dynamics. These SHB features confirm coherent electron spin dynamics in charged dots, and the linewidths reveal spin spectral diffusion processes.Comment: 5 pages, 5 figure

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    Internal transitions of quasi-2D charged magneto-excitons in the presence of purposely introduced weak lateral potential energy variations

    Full text link
    Optically detected resonance spectroscopy has been used to investigate effects of weak random lateral potential energy fluctuations on internal transitions of charged magneto-excitons (trions) in quasi two-dimensional GaAs/AlGaAs quantum-well (QW) structures. Resonant changes in the ensemble photoluminescence induced by far-infrared radiation were studied as a function of magnetic field for samples having: 1) no growth interrupts (short range well-width fluctuations), and 2) intentional growth interrupts (long range monolayer well-width differences). Only bound-to-continuum internal transitions of the negatively charged trion are observed for samples of type 1. In contrast, a feature on the high field (low energy) side of electron cyclotron resonance is seen for samples of type 2 with well widths of 14.1 and 8.4 nm. This feature is attributed to a bound-to-bound transition of the spin-triplet with non-zero oscillator strength resulting from breaking of translational symmetry.Comment: 16 pages, 3 figures, submitted to Physical Review

    The Frequency of Mid-Infrared Excess Sources in Galactic Surveys

    Get PDF
    We have identified 230 Tycho-2 Spectral Catalog stars that exhibit 8 micron mid-infrared extraphotospheric excesses in the MidCourse Space Experiment (MSX) and Spitzer Space Telescope Galactic Legacy MidPlane Survey Extraordinaire (GLIMPSE) surveys. Of these, 183 are either OB stars earlier than B8 in which the excess plausibly arises from a thermal bremsstrahlung component or evolved stars in which the excess may be explained by an atmospheric dust component. The remaining 47 stars have spectral classifications B8 or later and appear to be main sequence or late pre-main-sequence objects harboring circumstellar disks. Six of the 47 stars exhibit multiple signatures characteristic of pre-main-sequence circumstellar disks, including emission lines, near-infrared K-band excesses, and X-ray emission. Approximately one-third of the remaining 41 sources have emission lines suggesting relative youth. Of the 25 GLIMPSE stars with SST data at >24 microns, 20 also show an excess at 24 microns. Three additional objects have 24 micron upper limits consistent with possible excesses, and two objects have photospheric measurements at 24 microns. Six MSX sources had a measurement at wavelengths >8 microns. We modeled the excesses in 26 stars having two or more measurements in excess of the expected photospheres as single-component blackbodies. We determine probable disk temperatures and fractional infrared luminosities in the range 191 < T < 787 and 3.9x10^-4 < L_IR/L_* < 2.7x10^-1. We estimate a lower limit on the fraction of Tycho-2 Spectral Catalog main-sequence stars having mid-IR, but not near-IR, excesses to be 1.0+-0.3%.Comment: Accepted to Ap
    • …
    corecore