139 research outputs found

    An adaptive computation mesh for the solution of singular perturbation problems

    Get PDF
    In singular perturbation problems, control of zone size variation can affect the effort required to obtain accurate, numerical solutions of finite difference equations. The mesh is generated by the solution of potential equations. Numerical results for a singular perturbation problem in two dimensions are presented. The mesh was used in calculations of resistive magnetohydrodynamic flow in two dimensions

    Plasma sheet structure in the magnetotail: kinetic simulation and comparison with satellite observations

    Get PDF
    We use the results of a three-dimensional kinetic simulation of an Harris current sheet to propose an explanation and to reproduce the ISEE-1/2, Geotail, and Cluster observations of the magnetotail current sheet structure. Current sheet flapping, current density bifurcation, and reconnection are explained as the results of the kink and tearing instabilities, which dominate the current sheet evolution.Comment: Submitted to Geophys. Res. Lett. (2003

    3D reconnection due to oblique modes: a simulation of Harris current sheets

    Full text link
    International audienceSimulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines

    Influence of the Lower Hybrid Drift Instability on the onset of Magnetic Reconnection

    Full text link
    Two-dimensional and three-dimensional kinetic simulation results reveal the importance of the Lower-Hybrid Drift Instability LHDI to the onset of magnetic reconnection. Both explicit and implicit kinetic simulations show that the LHDI heats electrons anisotropically and increases the peak current density. Linear theory predicts these modifications can increase the growth rate of the tearing instability by almost two orders of magnitude and shift the fastest growing modes to significantly shorter wavelengths. These predictions are confirmed by nonlinear kinetic simulations in which the growth and coalescence of small scale magnetic islands leads to a rapid onset of large scale reconnection
    • 

    corecore