9 research outputs found

    Sub-nanogram Pb isotope analysis of individual melt inclusions

    Get PDF
    Precise analysis of 20xPb/204Pb ratios is challenging when the amount of Pb is limited by sample volume or elemental concentration. The current precision impedes meaningful analyses of analytes with sub-nanogram Pb contents, such as individual melt inclusions with typical diameters (200 pg Pb, which will ultimately help to better constrain mantle heterogeneity beneath mid-ocean ridges, oceanic islands, and volcanic arcs

    Asthenosphere-induced melting of diverse source regions for East Carpathian post-collisional volcanism

    Get PDF
    The occurrence of post-subduction magmatism in continental collision zones is a ubiquitous feature of plate tectonics, but its relation with geodynamic processes remains enigmatic. The nature of mantle sources in these settings, and their interaction with subduction-related components, are difficult to constrain using bulk rocks when magmas are subject to mixing and assimilation within the crust. Here we examine post-collisional magma sources in space and time through the chemistry of olivine-hosted melt inclusions and early-formed minerals (spinel, olivine and clinopyroxene) in primitive volcanic rocks from the Neogene–Quaternary East Carpathian volcanic range in Călimani (calc-alkaline; 10.1–6.7 Ma), Southern Harghita (calc-alkaline to shoshonitic; 5.3–0.03 Ma) and the Perșani Mountains (alkali basaltic; 1.2–0.6 Ma). Călimani calc-alkaline parental magma compositions indicate a lithospheric mantle source metasomatised by ~ 2% sediment-derived melts, and are best reproduced by ~ 2–12% melting. Mafic K-alkaline melts in Southern Harghita originate from a melt- and fluid-metasomatised lithospheric mantle source containing amphibole (± phlogopite), by ~ 5% melting. Intraplate Na-alkaline basalts from Racoș (Perșani) reflect small-degree (1–2%) asthenosphere-derived parental melts which experienced minor interaction with metasomatic components in the lithosphere. An important feature of the East Carpathian post-collisional volcanism is that the lithospheric source regions are located in the lower plate (distal Europe-Moesia), rather than the overriding plate (Tisza-Dacia). The volcanism appears to have been caused by (1) asthenospheric uprise following slab sinking and possibly south-eastward propagating delamination and breakoff, which induced melting of the subduction-modified lithospheric mantle (Călimani to Southern Harghita); and (2) decompression melting as a consequence of minor asthenospheric upwelling (Perșani)

    The South Armenian Block: Gondwanan origin and Tethyan evolution in space and time

    Get PDF
    The geodynamic evolution of the South Armenian Block (SAB) within the Tethyan realm during the Palaeozoic to present-day is poorly constrained. Much of the SAB is covered by Cenozoic sediments so that the relationships between the SAB and the neighbouring terranes of Central Iran, the Pontides and Taurides are unclear. Here we present new geochronological, palaeomagnetic, and geochemical constraints to shed light on the Gondwanan and Cimmerian provenance of the SAB, timing of its rifting, and geodynamic evolution since the Permian. We report new 40Ar/39Ar and zircon U-Pb ages and compositional data on magmatic sills and dykes in the Late Devonian sedimentary cover, as well as metamorphic rocks that constitute part of the SAB basement. Zircon age distributions, ranging from ∼3.6 Ga to 100 Ma, firmly establish a Gondwanan origin for the SAB. Trondhjemite intrusions into the basement at ∼263 Ma are consistent with a SW-dipping active continental margin. Mafic intraplate intrusions at ∼246 Ma (OIB) and ∼234 Ma (P-MORB) in the sedimentary cover likely represent the incipient stages of breakup of the NE Gondwanan margin and opening of the Neotethys. Andesitic dykes at ∼117 Ma testify to the melting of subduction-modified lithosphere. In contrast to current interpretations, we show that the SAB should be considered separate from the Taurides, and that the Armenian ophiolite complexes formed chiefly in the Eurasian forearc. Based on the new constraints, we provide a geodynamic reconstruction of the SAB since the Permian, in which it started rifting from Gondwana alongside the Pontides, likely reached the Iranian margin in Early Jurassic times, and was subject to episodes of intraplate (∼189 Ma) and NE-dipping subduction-related (∼117 Ma) magmatism

    Estimates of the Temperature and Melting Conditions of the Carpathian-Pannonian Upper Mantle From Volcanism and Seismology

    No full text
    What drives the formation of basaltic melts beneath intraplate volcanoes not associated with extensive thermal anomalies or lithospheric extension? Detailed constraints on the melting conditions and source region are imperative to resolve this question. Here we model the geochemistry of alkali basalts and mantle nodules brought up by young (12–0.1 Ma) intraplate volcanoes distributed across the Carpathian-Pannonian region and combine the results with geophysical observations. Rare earth element inversion and forward calculation of elemental concentrations show that the basalts require the mantle to have undergone less than 1% melting in the garnet-spinel transition zone, at depths of about 63–72 km. The calculated melt distributions correspond to a mantle potential temperature of ∼1257°C, equivalent to a real temperature of 1290°C at 65 km beneath the Pannonian Basin. The composition, modal mineralogy, and clinopyroxene geochemistry of some of the entrained mantle nodules closely resemble the basalt source, though the latter equilibrated at greater depths. The gravity anomalies and topography of the Basin reveal no large-scale features that can account for the post-extensional volcanism. Instead, the lithospheric thickness and geotherm show that melting occurs because the base of the lithosphere, at ∼50-km depth, is close to or at the solidus temperature over a large part of the Basin. Hence, only a small amount of upwelling is required to produce minor volumes (up to a few cubic kilometers) of melt. We conclude that the Pannonian volcanism originates from upwelling in the asthenosphere just below thinned lithosphere, which is likely to be driven by thermal buoyancy

    Asthenosphere-induced melting of diverse source regions for East Carpathian post-collisional volcanism

    Get PDF
    The occurrence of post-subduction magmatism in continental collision zones is a ubiquitous feature of plate tectonics, but its relation with geodynamic processes remains enigmatic. The nature of mantle sources in these settings, and their interaction with subduction-related components, are difficult to constrain using bulk rocks when magmas are subject to mixing and assimilation within the crust. Here we examine post-collisional magma sources in space and time through the chemistry of olivine-hosted melt inclusions and early-formed minerals (spinel, olivine and clinopyroxene) in primitive volcanic rocks from the Neogene–Quaternary East Carpathian volcanic range in Călimani (calc-alkaline; 10.1–6.7 Ma), Southern Harghita (calc-alkaline to shoshonitic; 5.3–0.03 Ma) and the Perșani Mountains (alkali basaltic; 1.2–0.6 Ma). Călimani calc-alkaline parental magma compositions indicate a lithospheric mantle source metasomatised by ~ 2% sediment-derived melts, and are best reproduced by ~ 2–12% melting. Mafic K-alkaline melts in Southern Harghita originate from a melt- and fluid-metasomatised lithospheric mantle source containing amphibole (± phlogopite), by ~ 5% melting. Intraplate Na-alkaline basalts from Racoș (Perșani) reflect small-degree (1–2%) asthenosphere-derived parental melts which experienced minor interaction with metasomatic components in the lithosphere. An important feature of the East Carpathian post-collisional volcanism is that the lithospheric source regions are located in the lower plate (distal Europe-Moesia), rather than the overriding plate (Tisza-Dacia). The volcanism appears to have been caused by (1) asthenospheric uprise following slab sinking and possibly south-eastward propagating delamination and breakoff, which induced melting of the subduction-modified lithospheric mantle (Călimani to Southern Harghita); and (2) decompression melting as a consequence of minor asthenospheric upwelling (Perșani)

    The multi-component mantle source of Roman province ultrapotassic magmas revealed by melt inclusions

    Get PDF
    A key effect of subduction is the upward infiltration of slab-derived melts and fluids to create a chemically and lithologically heterogeneous region in the mantle wedge. Magmatism within the post-subduction setting of peninsular Italy is derived from a sediment-metasomatised lithospheric mantle source, with primitive products recording substantial temporal and spatial variations in the nature and extent of metasomatism. The Roman magmatic province, in central Italy, is host to ultrapotassic (HKS), leucite-bearing magmas that require source modification that is not yet well-constrained in terms of mineralogy and sediment provenance. Here, we present the chemistry and Sr-Nd-Pb isotope compositions of melt inclusions in forsterite-rich olivine (Fo88−92) from three key Roman volcanic centres (Vulsini, Sabatini, Alban Hills) to characterise the metasomatic imprint of their mantle sources. The melt inclusion suites (Vulsini HKS, Vulsini melilite-bearing HKS, Sabatini HKS, Alban Hills HKS) have clear differences in major-element (K, Ca, Al, P, Ti), volatile (F, Cl, B, Be), trace-element (e.g., Rb, Sr/Y, Th/Nb), and radiogenic-isotope (87Sr/86Sr) compositions that reflect the diversity of the primary melts beneath the region. For each suite, the extraction of melt batches from different domains in a heterogeneous (veined) source rock with different compositions and mineralogies can explain the chemical characteristics of the melts. At least three metasomatic vein types are required to form the respective parental melts and we infer phase assemblages consisting of phlogopite + Ca-amphibole + clinopyroxene ± apatite. The Sr-isotope differences between Vulsini melilite-bearing HKS and Vulsini and Sabatini HKS require at least two distinct metasomatic events to have occurred beneath the Roman province. These events need not be associated with two distinct subduction systems. Instead, we infer that different metasomatic agents could have originated under different P-T-t conditions from different domains in the same subducting slab

    Asthenosphere-induced melting of diverse source regions for East Carpathian post-collisional volcanism

    No full text
    The occurrence of post-subduction magmatism in continental collision zones is a ubiquitous feature of plate tectonics, but its relation with geodynamic processes remains enigmatic. The nature of mantle sources in these settings, and their interaction with subduction-related components, are difficult to constrain using bulk rocks when magmas are subject to mixing and assimilation within the crust. Here we examine post-collisional magma sources in space and time through the chemistry of olivine-hosted melt inclusions and early-formed minerals (spinel, olivine and clinopyroxene) in primitive volcanic rocks from the Neogene–Quaternary East Carpathian volcanic range in Călimani (calc-alkaline; 10.1–6.7 Ma), Southern Harghita (calc-alkaline to shoshonitic; 5.3–0.03 Ma) and the Perșani Mountains (alkali basaltic; 1.2–0.6 Ma). Călimani calc-alkaline parental magma compositions indicate a lithospheric mantle source metasomatised by ~ 2% sediment-derived melts, and are best reproduced by ~ 2–12% melting. Mafic K-alkaline melts in Southern Harghita originate from a melt- and fluid-metasomatised lithospheric mantle source containing amphibole (± phlogopite), by ~ 5% melting. Intraplate Na-alkaline basalts from Racoș (Perșani) reflect small-degree (1–2%) asthenosphere-derived parental melts which experienced minor interaction with metasomatic components in the lithosphere. An important feature of the East Carpathian post-collisional volcanism is that the lithospheric source regions are located in the lower plate (distal Europe-Moesia), rather than the overriding plate (Tisza-Dacia). The volcanism appears to have been caused by (1) asthenospheric uprise following slab sinking and possibly south-eastward propagating delamination and breakoff, which induced melting of the subduction-modified lithospheric mantle (Călimani to Southern Harghita); and (2) decompression melting as a consequence of minor asthenospheric upwelling (Perșani)

    The South Armenian Block: Gondwanan origin and Tethyan evolution in space and time

    Get PDF
    The geodynamic evolution of the South Armenian Block (SAB) within the Tethyan realm during the Palaeozoic to present-day is poorly constrained. Much of the SAB is covered by Cenozoic sediments so that the relationships between the SAB and the neighbouring terranes of Central Iran, the Pontides and Taurides are unclear. Here we present new geochronological, palaeomagnetic, and geochemical constraints to shed light on the Gondwanan and Cimmerian provenance of the SAB, timing of its rifting, and geodynamic evolution since the Permian. We report new 40Ar/39Ar and zircon U-Pb ages and compositional data on magmatic sills and dykes in the Late Devonian sedimentary cover, as well as metamorphic rocks that constitute part of the SAB basement. Zircon age distributions, ranging from ∼3.6 Ga to 100 Ma, firmly establish a Gondwanan origin for the SAB. Trondhjemite intrusions into the basement at ∼263 Ma are consistent with a SW-dipping active continental margin. Mafic intraplate intrusions at ∼246 Ma (OIB) and ∼234 Ma (P-MORB) in the sedimentary cover likely represent the incipient stages of breakup of the NE Gondwanan margin and opening of the Neotethys. Andesitic dykes at ∼117 Ma testify to the melting of subduction-modified lithosphere. In contrast to current interpretations, we show that the SAB should be considered separate from the Taurides, and that the Armenian ophiolite complexes formed chiefly in the Eurasian forearc. Based on the new constraints, we provide a geodynamic reconstruction of the SAB since the Permian, in which it started rifting from Gondwana alongside the Pontides, likely reached the Iranian margin in Early Jurassic times, and was subject to episodes of intraplate (∼189 Ma) and NE-dipping subduction-related (∼117 Ma) magmatism
    corecore