210 research outputs found
On the realization of Symmetries in Quantum Mechanics
The aim of this paper is to give a simple, geometric proof of Wigner's
theorem on the realization of symmetries in quantum mechanics that clarifies
its relation to projective geometry. Although several proofs exist already, it
seems that the relevance of Wigner's theorem is not fully appreciated in
general. It is Wigner's theorem which allows the use of linear realizations of
symmetries and therefore guarantees that, in the end, quantum theory stays a
linear theory. In the present paper, we take a strictly geometrical point of
view in order to prove this theorem. It becomes apparent that Wigner's theorem
is nothing else but a corollary of the fundamental theorem of projective
geometry. In this sense, the proof presented here is simple, transparent and
therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
Fusion rate enhancement due to energy spread of colliding nuclei
Experimental results for sub-barrier nuclear fusion reactions show cross
section enhancements with respect to bare nuclei which are generally larger
than those expected according to electron screening calculations. We point out
that energy spread of target or projectile nuclei is a mechanism which
generally provides fusion enhancement. We present a general formula for
calculating the enhancement factor and we provide quantitative estimate for
effects due to thermal motion, vibrations inside atomic, molecular or crystal
system, and due to finite beam energy width. All these effects are marginal at
the energies which are presently measurable, however they have to be considered
in future experiments at still lower energies. This study allows to exclude
several effects as possible explanation of the observed anomalous fusion
enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl
Two-Loop Effects and Current Status of the 4He+ Lamb Shift
We report on recent progress in the treatment of two-loop binding corrections
to the Lamb shift, with a special emphasis on S and P states. We use these and
other results in order to infer an updated theoretical value of the Lamb shift
in 4He+.Comment: 11 pages, nrc1 style; paper presented at PSAS (2006), Venic
The Cross Section of 3He(3He,2p)4He measured at Solar Energies
We report on the results of the \hethet\ experiment at the underground
accelerator facility LUNA (Gran Sasso). For the first time the lowest
projectile energies utilized for the cross section measurement correspond to
energies below the center of the solar Gamow peak (=22 keV). The
data provide no evidence for the existence of a hypothetical resonance in the
energy range investigated. Although no extrapolation is needed anymore (except
for energies at the low-energy tail of the Gamow peak), the data must be
corrected for the effects of electron screening, clearly observed the first
time for the \hethet\ reaction. The effects are however larger than expected
and not understood, leading presently to the largest uncertainty on the quoted
value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical
resonanz added, Submitted to Phys. Rev. C., available at this URL:
HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm
Transport of Stratospheric Air Masses to the Nepal Climate ObservatoryâPyramid (Himalaya; 5079 m MSL): A Synoptic-Scale Investigation
AbstractThis work analyzes and classifies stratospheric airmass transport events (ST) detected at the Nepal Climate ObservatoryâPyramid (NCO-P; 27°57âČN, 86°48âČE, 5079 m MSL) Global Atmospheric WatchâWorld Meteorological Organization station from March 2006 to February 2008. For this purpose, in situ ozone (O3), meteorological parameters (atmospheric pressure and relative humidity), and black carbon (BC) are analyzed. The paper describes the synoptic-scale meteorological scenarios that are able to favor the development of ST over the southern Himalaya, by analyzing the meteorological fields provided by the ECMWF model (geopotential height, wind speed, and potential vorticity), satellite Ozone Monitoring Instrument data (total column ozone), and three-dimensional back trajectories calculated with the Lagrangian Analysis Tool (LAGRANTO) model. The study, which represents the first "continuous" classification of ST in the southern Himalaya, permitted classification of 94% of ST days within four synoptic-scale scenarios: stratospheric potential vorticity structures (PVS), subtropical jet stream (SJS), quasi-stationary ridges (QSR), and monsoon depressions (MD). SJS and PVS were the most frequent scenarios (48% and 30% of occurrences, respectively), QSR occurred for 12% of the ST days, and MD were detected only during the monsoon season (3%). SJS and PVS scenarios presented a peak frequency during the nonmonsoon seasons, when the jet stream and westerly disturbances influence atmospheric circulation over the southern Himalaya. During the identified ST, significant variations of O3 (+24%) and BC (â56%) were recorded relative to the averaged 2-yr mean values. On average, PVS and SJS were the most effective synoptic-scale scenarios in modifying the O3 and BC levels at NCO-P from postmonsoon to premonsoon seasons, and ST is one of the leading processes in defining the "background" BC variability at NCO-P
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
- âŠ