28 research outputs found

    PACAP peptides modulate guinea pig cardiac neuron membrane excitability and neuropeptide expression

    No full text
    Morphological studies identified PACAP-immunoreactive nerve fibers in dense pericellular arrangements around virtually every cholinergic parasympathetic neuron of guinea pig cardiac ganglia; all postganglionic cardiac neurons expressed membrane-associated PAC receptor protein. Characterization of the alternative splice variants established predominant expression of the PAC (very short) receptor transcript containing neither HIP nor HOP exons. PACAP depolarized cardiac neurons and increased membrane excitability; the excitability resulted from neither altered action potential properties nor inhibition of I . Treatment of cardiac ganglia explants with PACAP significantly reduced the numbers of cholinergic neurons coexpressing somatostatin immunoreactivity, which did not appear to be correlated with prosomatostatin mRNA expression. The PACAP-mediated decrease in somatostatin immunoreactive neurons required calcium influx through L-type calcium channels and activation of adenylyl cyclase, whereas activation of phospholipase C or protein kinase A was not required. These observations indicate that PACAP through the PAC receptors elicits complex actions on guinea pig parasympathetic cardiac ganglia neurons, including modulation of membrane ion conductances and modulation of neuropeptide expression. 1 1 M

    Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes

    No full text
    PACAP peptides are expressed and regulated in sensory afferents of the micturition pathway. Although these studies have implicated PACAP in bladder control, the physiological significance of these observations has not been firmly established. To clarify these issues, the roles of PACAP and PACAP signaling in micturition and cystitis were examined in receptor characterization and physiological assays. PACAP receptors were identified in various tissues of the micturition pathway including bladder detrusor smooth muscle and urothelium. Bladder smooth muscle expressed heterogeneously PAC(1)null, PAC(1)HOP1 and VPAC(2) receptors; the urothelium was more restricted in expressing preferentially the PAC(1) receptor subtype only. Immunocytochemical studies for PAC(1) receptors were consistent with these tissue distributions. Furthermore, the addition of 50 – 100 nM PACAP27 or PACAP38 to isolated bladder strips elicited transient contractions and sustained increases in the amplitude of spontaneous phasic contractions. Treatment of the bladder strips with tetrodotoxin (1 μM) did not alter the spontaneous phasic contractions suggesting direct PACAP effects on bladder smooth muscle. PACAP also increased the amplitude of nerve-evoked contractions. By contrast, VIP had no direct effects on bladder smooth muscle. In a rat cyclophosphamide (CYP)-induced cystitis paradigm, intrathecal or intravesical administration of PAC(1) receptor antagonist, PACAP6-38, reduced cystitis-induced bladder overactivity. In sum, these studies support roles for PACAP in micturition and suggest that inflammation-induced plasticity in PACAP expression in peripheral and central micturition pathways contribute to bladder dysfunction with cystitis
    corecore