215 research outputs found
Metabolism and growth inhibition of four retinoids in head and neck squamous normal and malignant cells
Isotretinoin (13- cis -retinoic acid, 13cRA) has proven to be active in chemoprevention of head and neck squamous cell carcinoma (HNSCC). Moreover, both all-trans-retinoic acid (ATRA) and 13cRA induce objective responses in oral premalignant lesions. After binding of retinoids to retinoic acid receptors (RARs and RXRs) dimers are formed that are able to regulate the expression of genes involved in growth and differentiation. We compared the metabolism and level of growth inhibition of 13cRA with that of ATRA, 9cRA and retinol in four HNSCC cell lines and normal oral keratinocyte cultures (OKC). These retinoid compounds are known to bind with different affinities to the retinoic acid receptors. We observed that all retinoids were similar with respect to their capacity to induce growth inhibition. One HNSCC line could be ranked as sensitive, one as moderately sensitive and the remaining two were totally insensitive; OKC were moderately sensitive. The rate at which the cells were able to catabolize the retinoid was similar for all compounds. Retinoid metabolism in HNSCC cells resulted in a profile of metabolites that was unique for each retinoid. These metabolic profiles were different in OKC. Our findings indicate that differences in retinoid receptor selectivity of these retinoids do not influence the level of growth inhibition and rate of metabolism. © 2001 Cancer Research Campaign http://www.bjcancer.co
Enhanced therapeutic efficacy of 5'deoxy-5-fluorouridine in 5-fluorouracil resistant head and neck tumours in relation to 5-fluorouracil metabolising enzymes.
Four human head and neck xenograft (HNX) tumour lines grown in nude mice and two murine colon carcinomas (Colon 26 and 38) were tested for their sensitivity to 5-fluorouracil (5-FU) and its prodrug 5'deoxy-5-fluorouridine (Doxifluridine, 5'd-FUR). 5-FU sensitivity at the maximum tolerated dose (MTD) showed the following pattern; HNX-DU less than HNX-KE = HNX-E = HNX-G less than Colon 26 much less than Colon 38. The sensitivity pattern to 5'd-FUR was: HNX-DU less than HNX-G less than HNX-E less than HNX-KE less than Colon 38 less than Colon 26. For HNX-KE, HNX-E and Colon 26 an increase in therapeutic efficacy was observed with 5'd-FUR as compared to 5-FU; Colon 38 was as sensitive to 5'd-FUR as to 5-FU. Plasma pharmacokinetics of 5'd-FUR and 5-FU were comparable in normal and nude mice. Metabolism of 5-FU and 5'd-FUR was studied in the tumours. Conversion of 5'd-FUR to 5-FU was highest in Colon 26 and 15-20 times lower in HNX-DU, HNX-KE and Colon 38. The Km for 5'd-FUR in all tumours was 1-2 mM. Further anabolism of 5-FU to fluorouridine (FUR) was 5-10 times higher than that of 5-FU to FUR in HNX tumours and 3 times in the colon tumours. 5-FU conversion to FUMP via FUR had the following pattern: Colon 26 much greater than HNX-DU greater than HNX-G greater than HNX-E greater than HNX-KE much greater than Colon 38; of 5-FU to FdUMP via FUdR: Colon 26 greater than HNX-DU = HNX-KE greater than HNX-E greater than HNX-G = Colon 38; and that of 5-FU to FUMP catalysed by orotate phosphoribosyl transferase (OPRT); Colon 26 greater than or equal to Colon 38 greater than HNX-KE greater than HNX-E = HNX-DU = HNX-G. Only those tumours with a relatively high activity of OPRT were sensitive to 5'd-FUR. Colon 26, which has a very high rate of pyrimidine nucleoside phosphorylase, showed a relatively high increase in the therapeutic efficacy. It is concluded that a low rate of pyrimidine nucleoside phosphorylase is enough to convert 5'd-FUR to 5-FU; further anabolism of 5-FU catalysed by OPRT may be limiting and explain the differential sensitivity
Radioimmunotherapy of human head and neck squamous cell carcinoma xenografts with 131I-labelled monoclonal antibody E48 IgG.
Monoclonal antibody (MAb) E48 reacts with a 22 kD antigen exclusively expressed in squamous and transitional epithelia and their neoplastic counterparts. Radiolabelled with 99mTc, MAb E48 is capable of targeting metastatic and recurrent disease in patients with head and neck cancer. In this study, the capacity of 131I-labelled MAb E48 to eradicate xenografts of human squamous cell carcinoma of the head and neck (HNSCC) in nude mice was examined. Experimental groups received a single i.v. bolus injection of 400 microCi MAb E48 IgG (number of mice (n = 6, number of tumours (t) = 9) or 800 microCi MAb E48 IgG (n) = 5,t = 7), whereas control groups received either diluent (n = 3,t = 5), unlabelled MAb E48 IgG (n = 4,t = 5) or 800 microCi 131I-labelled isotype-matched control MAb (n = 6,t = 9). A 4.1-fold increase in the median tumour volume doubling time and regression of two out of ten tumours (20%) was observed in mice treated with 400 microCi. In mice treated with 800 microCi. In mice treated with 800 microCi, two out of seven tumours (29%) showed complete remission without regrowth during follow-up (greater than 3 months). Median tumour volume doubling time in the remaining five tumours was increased 7.8-fold. No antitumour effects were observed in mice injected with diluent, unlabelled MAb E48 or 131I-labelled control MAb. In the same xenograft model, chemotherapy with doxorubicin, 5-fluorouracil, cisplatin, bleomycin, methotrexate or 2',2'-difluorodeoxycytidine yielded a less profound effect on tumour volume doubling time. Increases in tumour volume doubling time with these chemotherapeutic agents were 4, 2.2, 2.1, 1.7, 0, and 2.6 respectively. Moreover, no cures were observed with any of these chemotherapeutic agents. From the tissue distribution of 800 microCi MAb E48, the absorbed cumulative radiation doses of tumour and various organs were calculated using the trapezoid integration method for the area under the curve. To tumour xenografts, 12,170 cGy was delivered, blood received 2,984 cGy, whereas in every other tissue the accumulated dose was less than 6% of the dose delivered to tumour. These data, describing the first radiolabelled MAb with therapeutic efficacy against HNSCC, suggest radioimmunotherapy with MAb E48 to be a potential therapeutic modality for the treatment of head and neck cancer
Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines.
Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition
Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes
Background: Susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes may reflect the way a person deals with carcinogenic challenges. This susceptibility (also referred to as mutagen sensitivity) has been found to be increased in patients with environmentally related cancers, including cancers of the head and neck, lung, and colon, and, in combination with carcinogenic exposure, this susceptibility can greatly influence cancer risk. The purpose of this study was to assess the heritability of mutagen sensitivity. Methods: Heritability was determined by use of a maximum likelihood method that employed the FISHER package of pedigree analysis. Bleomycin-induced breaks per cell values for 135 healthy volunteers without cancer were determined. These individuals were from 53 different pedigrees and included 25 monozygotic twin pairs (n = 50), 14 pairs of dizygotes (twin pairs and siblings, n = 28), and 14 families selected on the basis of a first-degree relative who was successfully treated for head and neck cancer and who had no sign of recurrence for at least 1 year. All data were analyzed simultaneously, and different models of familial resemblance were fitted to the data. All P values are two-sided. Results: Our results showed no evidence for the influence of a shared family environment on bleomycin-induced chromatid breaks. Genetic influences, however, were statistically significant (P = .036) and accounted for 75% of the total variance. Conclusions: The high heritability estimate of the susceptibility to bleomycin-induced chromatid breaks indicates a clear genetic basis. The findings of this study support the notion that a common genetic susceptibility to DNA damage - and thereby a susceptibility to cancer - may exist in the general population
Alteration of proliferation and apoptotic markers in normal and premalignant tissue associated with prostate cancer
BACKGROUND: Molecular markers identifying alterations in proliferation and apoptotic pathways could be particularly important in characterizing high-risk normal or pre-neoplastic tissue. We evaluated the following markers: Ki67, Minichromosome Maintenance Protein-2 (Mcm-2), activated caspase-3 (a-casp3) and Bcl-2 to determine if they showed differential expression across progressive degrees of intraepithelial neoplasia and cancer in the prostate. To identify field effects, we also evaluated whether high-risk expression patterns in normal tissue were more common in prostates containing cancer compared to those without cancer (supernormal), and in histologically normal glands adjacent to a cancer focus as opposed to equivalent glands that were more distant. METHODS: The aforementioned markers were studied in 13 radical prostatectomy (RP) and 6 cystoprostatectomy (CP) specimens. Tissue compartments representing normal, low grade prostatic intraepithelial neoplasia (LGPIN), high grade prostatic intraepithelial neoplasia (HGPIN), as well as different grades of cancer were mapped on H&E slides and adjacent sections were analyzed using immunohistochemistry. Normal glands within 1 mm distance of a tumor focus and glands beyond 5 mm were considered "near" and "far", respectively. Randomly selected nuclei and 40 × fields were scored by a single observer; basal and luminal epithelial layers were scored separately. RESULTS: Both Ki-67 and Mcm-2 showed an upward trend from normal tissue through HGPIN and cancer with a shift in proliferation from basal to luminal compartment. Activated caspase-3 showed a significant decrease in HGPIN and cancer compartments. Supernormal glands had significantly lower proliferation indices and higher a-casp3 expression compared to normal glands. "Near" normal glands had higher Mcm-2 indices compared to "far" glands; however, they also had higher a-casp3 expression. Bcl-2, which varied minimally in normal tissue, did not show any trend across compartments or evidence for field effects. CONCLUSION: These results demonstrate that proliferation and apoptosis are altered not only in preneoplastic lesions but also in apparently normal looking epithelium associated with cancer. Luminal cell expression of Mcm-2 appears to be particularly promising as a marker of high-risk normal epithelium. The role of apoptotic markers such as activated caspase-3 is more complex, and might depend on the proliferation status of the tissue in question
- …