8 research outputs found

    Heating and Cooling Anomaly of a Rotating Body

    Get PDF
    This paper deals with an effect which appears when heating or cooling a rotating body. No external forces acting on the body are supposed. Due to thermal expansion, the moment of inertia of the body varies together with the temperature changes. In agreement with the principle of conservation of angular momentum [1], the angular momentum is constant. This results in angular velocity changes and subsequently in kinetic energy changes. Also the stress energy varies together with the changes in thermal dimension. To satisfy the principle of energy conservation we have to suppose that the changes in kinetic and stress energy are compensated by the changes in internal energy, which is correlated with temperature changes of the body. This means that the rules for the heating or cooling process of a rotating body are not the same as those for a body at rest. This idea, applied to a cylinder rotating around its geometric axis under specific parameters, has been mathematically treated. As a result, the difference between the final temperature of the rotating cylinder and the temperature of the cylinder at rest has been found.

    Dynamics of the Flow Pattern in a Baffled Mixing Vessel with an Axial Impeller

    Get PDF
    This paper deals with the primary circulation of an agitated liquid in a flat-bottomed cylindrical stirred tank. The study is based on experiments, and the results of the experiments are followed by a theoretical evaluation. The vessel was equipped with four radial baffles and was stirred with a six pitched blade impeller pumping downwards. The experiments were concentrated on the lower part of the vessel, where the space pulsations of the primary loop, originated due to the pumping action of the impeller. This area is considered to be the birthplace of the flow macroinstabilities in the system – a phenomenon which has been studied and described by several authors. The flow was observed in a vertical plane passing through the axis of the vessel. The flow patterns of the agitated liquid were visualized by means of Al micro particles illuminated by a vertical light knife and scanned by a digital camera. The experimental conditions corresponded to the turbulent regime of agitated liquid flow.It was found that the primary circulation loop is elliptical in shape. The main diameter of the primary loop is not constant. It increases in time and after reaching a certain value the loop disintegrates and collapses. This process is characterized by a certain periodicity and its period proved to be correlated to the occurrence of flow macroinstability. The instability of the loop can be explained by a dissipated energy balance.  When the primary loop reaches the level of disintegration, the whole impeller power output is dissipated and under this condition any flow alteration requiring additional energy, even a very small vortex separation, causes the loop to collapse.

    Dynamics of the Flow Pattern in a Baffled Mixing Vessel with an Axial Impeller

    No full text
    This paper deals with the primary circulation of an agitated liquid in a flat-bottomed cylindrical stirred tank. The study is based on experiments, and the results of the experiments are followed by a theoretical evaluation. The vessel was equipped with four radial baffles and was stirred with a six pitched blade impeller pumping downwards. The experiments were concentrated on the lower part of the vessel, where the space pulsations of the primary loop, originated due to the pumping action of the impeller. This area is considered to be the birthplace of the flow macroinstabilities in the system – a phenomenon which has been studied and described by several authors. The flow was observed in a vertical plane passing through the axis of the vessel. The flow patterns of the agitated liquid were visualized by means of Al micro particles illuminated by a vertical light knife and scanned by a digital camera. The experimental conditions corresponded to the turbulent regime of agitated liquid flow.It was found that the primary circulation loop is elliptical in shape. The main diameter of the primary loop is not constant. It increases in time and after reaching a certain value the loop disintegrates and collapses. This process is characterized by a certain periodicity and its period proved to be correlated to the occurrence of flow macroinstability. The instability of the loop can be explained by a dissipated energy balance.  When the primary loop reaches the level of disintegration, the whole impeller power output is dissipated and under this condition any flow alteration requiring additional energy, even a very small vortex separation, causes the loop to collapse.
    corecore