755 research outputs found

    Magnetic shape-memory effect in SrRuO3_3

    Full text link
    Like most perovskites, SrRuO3_3 exhibits structural phase transitions associated with rotations of the RuO6_6 octahedra. The application of moderate magnetic fields in the ferromagnetically ordered state allows one to fully control these structural distortions, although the ferromagnetic order occurs at six times lower temperature than the structural distortion. Our neutron diffraction and macroscopic measurements unambiguously show that magnetic fields rearrange structural domains, and that for the field along a cubic [110]c_c direction a fully detwinned crystal is obtained. Subsequent heating above the Curie temperature causes a magnetic shape-memory effect, where the initial structural domains recover

    Machine Learning Approach for Optimization of Automated Fiber Placement Processes

    Get PDF
    Automated Fiber Placement (AFP) processes are commonly deployed in manufacturing of lightweight structures made of carbon fibre reinforced polymer. In general, AFP is connected to individual manufacturing knowledge during process planning and time consuming manual quality inspections. In both cases, automatic solutions provide a high economic potential. Therefore, a machine learning approach for planning, optimizing and inspection of AFP processes is presented. Process data from planning, CNC and online process monitoring is aggregated for the documentation of the part specific manufacturing history and the automated generation of manufacturing knowledge. Within this approach a complete automation of data capturing, data storing, modeling and optimizing is achieved.BMWi/ZIM KF2328125PO

    Status of CBMnet readout and the prototype ASIC

    Get PDF

    Hector, a fast simulator for the transport of particles in beamlines

    Get PDF
    Computing the trajectories of particles in generic beamlines is an important ingredient of experimental particle physics, in particular regarding near-beam detectors. A new tool, Hector, has been built for such calculations, using the transfer matrix approach and energy corrections. The limiting aperture effects are also taken into account. As an illustration, the tool was used to simulate the LHC beamlines, in particular around the high luminosity interaction points (IPs), and validated with results of the Mad-X simulator. The LHC beam profiles, trajectories and beta functions are presented. Assuming certain forward proton detector scenarios around the IP5, acceptance plots, irradiation doses and chromaticity grids are produced. Furthermore, the reconstruction of proton kinematic variables at the IP (energy and angle) is studied as well as the impact of the misalignment of beamline elements.Comment: 40 pages, 20 figures; added references, corrected typos ; submitted to JINS

    A constant of quantum motion in two dimensions in crossed magnetic and electric fields

    Full text link
    We consider the quantum dynamics of a single particle in the plane under the influence of a constant perpendicular magnetic and a crossed electric potential field. For a class of smooth and small potentials we construct a non-trivial invariant of motion. Do to so we proof that the Hamiltonian is unitarily equivalent to an effective Hamiltonian which commutes with the observable of kinetic energy.Comment: 18 pages, 2 figures; the title was changed and several typos corrected; to appear in J. Phys. A: Math. Theor. 43 (2010

    Magnetoelectric coupling in a frustrated spinel studied using high-field scanning probe microscopy

    Full text link
    Below its N\'eel temperature, the frustrated magnet CdCr2_2O4_4 exhibits an antiferromagnetic spin-spiral ground state. Such states can give rise to a sizable magnetoelectric coupling. In this report, we measure the electric polarization induced in single-crystalline CdCr2_2O4_4 by a large applied magnetic field. Because the detection of a macroscopic polarization is hindered by the structural domains in the tetragonal spin-spiral phase, we have pioneered an alternative method of measuring polarization induced by high magnetic fields, using electrostatic force microscopy. This method enables us to measure polarization from nanometer sized areas of the sample surface, as well as imaging how to charge inhomogeneities change with magnetic field.Comment: 5 pages, 3 figure

    Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR

    Get PDF
    HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO<sub>2</sub> and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As expected, production of HONO and NO<sub>x</sub> was also observed inside the new atmospheric simulation chamber SAPHIR under solar irradiation. This photolytic HONO and NO<sub>x</sub> formation was studied with a sensitive HONO instrument under reproducible controlled conditions at atmospheric concentrations of other trace gases. It is shown that the photolytic HONO source in the SAPHIR chamber is not caused by NO<sub>2</sub> reactions and that it is the only direct NO<sub>y</sub> source under illuminated conditions. In addition, the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber. A photolytic HONO source at the surface of the chamber is proposed which is strongly dependent on humidity, on light intensity, and on temperature. An empirical function describes these dependencies and reproduces the observed HONO formation rates to within 10%. It is shown that the photolysis of HONO represents the dominant radical source in the SAPHIR chamber for typical tropospheric O<sub>3</sub>/H<sub>2</sub>O concentrations. For these conditions, the HONO concentrations inside SAPHIR are similar to recent observations in ambient air

    Localization on quantum graphs with random vertex couplings

    Full text link
    We consider Schr\"odinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. Using the technique of self-adjoint extensions we obtain conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges
    • …
    corecore