755 research outputs found
Magnetic shape-memory effect in SrRuO
Like most perovskites, SrRuO exhibits structural phase transitions
associated with rotations of the RuO octahedra. The application of moderate
magnetic fields in the ferromagnetically ordered state allows one to fully
control these structural distortions, although the ferromagnetic order occurs
at six times lower temperature than the structural distortion. Our neutron
diffraction and macroscopic measurements unambiguously show that magnetic
fields rearrange structural domains, and that for the field along a cubic
[110] direction a fully detwinned crystal is obtained. Subsequent heating
above the Curie temperature causes a magnetic shape-memory effect, where the
initial structural domains recover
Machine Learning Approach for Optimization of Automated Fiber Placement Processes
Automated Fiber Placement (AFP) processes are commonly deployed in manufacturing of lightweight structures made of carbon fibre reinforced polymer. In general, AFP is connected to individual manufacturing knowledge during process planning and time consuming manual quality inspections. In both cases, automatic solutions provide a high economic potential. Therefore, a machine learning approach for planning, optimizing and inspection of AFP processes is presented. Process data from planning, CNC and online process monitoring is aggregated for the documentation of the part specific manufacturing history and the automated generation of manufacturing knowledge. Within this approach a complete automation of data capturing, data storing, modeling and optimizing is achieved.BMWi/ZIM KF2328125PO
Hector, a fast simulator for the transport of particles in beamlines
Computing the trajectories of particles in generic beamlines is an important
ingredient of experimental particle physics, in particular regarding near-beam
detectors. A new tool, Hector, has been built for such calculations, using the
transfer matrix approach and energy corrections. The limiting aperture effects
are also taken into account. As an illustration, the tool was used to simulate
the LHC beamlines, in particular around the high luminosity interaction points
(IPs), and validated with results of the Mad-X simulator. The LHC beam
profiles, trajectories and beta functions are presented. Assuming certain
forward proton detector scenarios around the IP5, acceptance plots, irradiation
doses and chromaticity grids are produced. Furthermore, the reconstruction of
proton kinematic variables at the IP (energy and angle) is studied as well as
the impact of the misalignment of beamline elements.Comment: 40 pages, 20 figures; added references, corrected typos ; submitted
to JINS
A constant of quantum motion in two dimensions in crossed magnetic and electric fields
We consider the quantum dynamics of a single particle in the plane under the
influence of a constant perpendicular magnetic and a crossed electric potential
field. For a class of smooth and small potentials we construct a non-trivial
invariant of motion. Do to so we proof that the Hamiltonian is unitarily
equivalent to an effective Hamiltonian which commutes with the observable of
kinetic energy.Comment: 18 pages, 2 figures; the title was changed and several typos
corrected; to appear in J. Phys. A: Math. Theor. 43 (2010
Magnetoelectric coupling in a frustrated spinel studied using high-field scanning probe microscopy
Below its N\'eel temperature, the frustrated magnet CdCrO exhibits an
antiferromagnetic spin-spiral ground state. Such states can give rise to a
sizable magnetoelectric coupling. In this report, we measure the electric
polarization induced in single-crystalline CdCrO by a large applied
magnetic field. Because the detection of a macroscopic polarization is hindered
by the structural domains in the tetragonal spin-spiral phase, we have
pioneered an alternative method of measuring polarization induced by high
magnetic fields, using electrostatic force microscopy. This method enables us
to measure polarization from nanometer sized areas of the sample surface, as
well as imaging how to charge inhomogeneities change with magnetic field.Comment: 5 pages, 3 figure
Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR
HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO<sub>2</sub> and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As expected, production of HONO and NO<sub>x</sub> was also observed inside the new atmospheric simulation chamber SAPHIR under solar irradiation. This photolytic HONO and NO<sub>x</sub> formation was studied with a sensitive HONO instrument under reproducible controlled conditions at atmospheric concentrations of other trace gases. It is shown that the photolytic HONO source in the SAPHIR chamber is not caused by NO<sub>2</sub> reactions and that it is the only direct NO<sub>y</sub> source under illuminated conditions. In addition, the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber. A photolytic HONO source at the surface of the chamber is proposed which is strongly dependent on humidity, on light intensity, and on temperature. An empirical function describes these dependencies and reproduces the observed HONO formation rates to within 10%. It is shown that the photolysis of HONO represents the dominant radical source in the SAPHIR chamber for typical tropospheric O<sub>3</sub>/H<sub>2</sub>O concentrations. For these conditions, the HONO concentrations inside SAPHIR are similar to recent observations in ambient air
Localization on quantum graphs with random vertex couplings
We consider Schr\"odinger operators on a class of periodic quantum graphs
with randomly distributed Kirchhoff coupling constants at all vertices. Using
the technique of self-adjoint extensions we obtain conditions for localization
on quantum graphs in terms of finite volume criteria for some energy-dependent
discrete Hamiltonians. These conditions hold in the strong disorder limit and
at the spectral edges
- …