2 research outputs found
Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
Background:
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers, with a median survival of only three to six months. Standard treatment options and even targeted therapies have so far failed to improve long-term overall survival. Thus, novel treatment modalities for ATC, such as immunotherapy, are urgently needed. CD47 is a "don't eat me" signal, which prevents cancer cells from phagocytosis by binding to signal regulatory protein alpha on macrophages. So far, the role of macrophages and the CD47-signal regulatory protein alpha signaling axis in ATC is not well understood.
Methods:
This study analyzed 19 primary human ATCs for macrophage markers, CD47 expression, and immune checkpoints by immunohistochemistry. ATC cell lines and a fresh ATC sample were assessed by flow cytometry for CD47 expression and macrophage infiltration, respectively. CD47 was blocked in phagocytosis assays of co-cultured macrophages and ATC cell lines. Anti-CD47 antibody treatment was administered to ATC cell line xenotransplanted immunocompromised mice, as well as to tamoxifen-induced ATC double-transgenic mice.
Results:
Human ATC samples were heavily infiltrated by CD68- and CD163-expressing tumor-associated macrophages (TAMs), and expressed CD47 and calreticulin, the dominant pro-phagocytic molecule. In addition, ATC tissues expressed the immune checkpoint molecules programmed cell death 1 and programmed death ligand 1. Blocking CD47 promoted the phagocytosis of ATC cell lines by macrophages in vitro. Anti-CD47 antibody treatment of ATC xenotransplanted mice increased the frequency of TAMs, enhanced the expression of macrophage activation markers, augmented tumor cell phagocytosis, and suppressed tumor growth. In double-transgenic ATC mice, CD47 was expressed on tumor cells, and blocking CD47 increased TAM frequencies.
Conclusions:
Targeting CD47 or CD47 in combination with programmed cell death 1 may potentially improve the outcomes of ATC patients and may represent a valuable addition to the current standard of care
The "don't eat me" signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma
Diffuse malignant mesothelioma (DMM) is one of the prognostically most discouraging cancers with median survivals of only 12-22 months. Due to its insidious onset and delayed detection, DMM is often at an advanced stage at diagnosis and is considered incurable. Combined chemo- and radiotherapy followed by surgery only marginally affect outcome at the cost of significant morbidity. Because of the long time period between exposure to asbestos and disease onset, the incidence of DMM is still rising and predicted to peak around 2020. Novel markers for the reliable diagnosis of DMM in body cavity effusion specimens as well as more effective, targeted therapies are urgently needed. Here, we show that the "don't eat me" signalling molecule CD47, which inhibits phagocytosis by binding to signal regulatory protein α on macrophages, is overexpressed in DMM cells. A two-marker panel of high CD47 expression and BRCA1-associated protein 1 (BAP-1) deficiency had a sensitivity of 78% and specificity of 100% in discriminating DMM tumour cells from reactive mesothelial cells in effusions, which is superior to the currently used four-marker combination of BAP-1, glucose transporter type 1, epithelial membrane antigen and desmin. In addition, blocking CD47 inhibited growth and promoted phagocytosis of DMM cell lines by macrophages in vitro. Furthermore, DMM tumours in surgical specimens from patients as well as in a mouse DMM model expressed high levels of CD47 and were heavily infiltrated by macrophages. Our study demonstrates that CD47 is an accurate novel diagnostic DMM biomarker and that blocking CD47 may represent a promising therapeutic strategy for DMM