31 research outputs found

    A passive GHz frequency-division multiplexer/demultiplexer based on anisotropic magnon transport in magnetic nanosheets

    Full text link
    The emerging field of magnonics employs spin waves and their quanta, magnons, to implement wave-based computing on the micro- and nanoscale. Multi-frequency magnon networks allow for parallel data processing within single logic elements whereas this is not the case with conventional transistor-based electronic logic. However, a lack of experimentally proven solutions to efficiently combine and separate magnons of different frequencies has impeded the intensive use of this concept. In this Letter, we demonstrate the experimental realization of a spin-wave demultiplexer enabling frequency-dependent separation of GHz signals. The device is based on two-dimensional magnon transport in the form of spin-wave beams in unpatterned magnetic nanosheets. The intrinsic frequency-dependence of the beam direction is exploited to realize a passive functioning obviating an external control and additional power consumption. This approach paves the way to magnonic multiplexing circuits enabling simultaneous information transport and processing.Comment: 16 pages, 3 figure
    corecore