33 research outputs found
Therapeutic Microbiology: The Role of Bifidobacterium breve as Food Supplement for the Prevention/Treatment of Paediatric Diseases
The human intestinal microbiota, establishing a symbiotic relationship with the host, plays a significant role for human health. It is also well known that a disease status is frequently characterized by a dysbiotic condition of the gut microbiota. A probiotic treatment can represent an alternative therapy for enteric disorders and human pathologies not apparently linked to the gastrointestinal tract. Among bifidobacteria, strains of the species Bifidobacterium breve are widely used in paediatrics. B. breve is the dominant species in the gut of breast-fed infants and it has also been isolated from human milk. It has antimicrobial activity against human pathogens, it does not possess transmissible antibiotic resistance traits, it is not cytotoxic and it has immuno-stimulating abilities. This review describes the applications of B. breve strains mainly for the prevention/treatment of paediatric pathologies. The target pathologies range from widespread gut diseases, including diarrhoea and infant colics, to celiac disease, obesity, allergic and neurological disorders. Moreover, B. breve strains are used for the prevention of side infections in preterm newborns and during antibiotic treatments or chemotherapy. With this documentation, we hope to increase knowledge on this species to boost the interest in the emerging discipline known as "therapeutic microbiology"
Selection of Acetic Acid Bacterial Strains and Vinegar Production From Local Maltese Food Sources
This study investigates the isolation, identification, and fermentation performance of autochthonous acetic acid bacteria (AAB) from local niche habitats on the Island of Gozo (Malta) and their further use for vinegar production, employing local raw materials. The bacteria were isolated from grapevine berries and vinegar produced in the cottage industry. Following phenotype and genotype identification, the AAB were ascribed to the genera Acetobacter, Gluconobacter, and Komagataeibacter. A mixture of selected AAB was tested as an inoculum for vinegar production in bench fermenters, under different conditions and substrates, namely, grapes, honey, figs, onions, prickly pear, and tomatoes. The bench fermenters were operated under semi-continuous fermentation where working volumes were maintained by discharging and subsequent recharging accordingly to maintain the acidity in fermenters by adding 30-50 g/l of acetic acid for optimal Acetobacteraceae performance. Finally, the vinegar products obtained from the different substrates were evaluated for their quality, including organoleptic properties, which showed the superior quality of wood-treated vinegar samples with respect to neat vinegar samples
In-process real-time probiotic phenotypic strain identity tracking: The use of Fourier transform infrared spectroscopy
Probiotic bacteria, capable of conferring benefits to the host, can present challenges in design, development, scale-up, manufacturing, commercialization, and life cycle management. Strain identification is one of the main quality parameters; nevertheless, this task can be challenging since established methodologies can lack resolution at the strain level for some microorganisms and\or are labor-intensive and time-consuming. Fourier transform infrared spectroscopy (FTIRS) has been largely used for the investigation of pathogenic species in the clinical field, whereas only recently has been proposed for the identification of probiotic strains. Within the probiotic industrial production, bacterial strains can be subjected to stressful conditions that may affect genomic and phenotypic characteristics; therefore, real-time monitoring of all the sequential growth steps is requested. Considering the fast, low-cost, and high-throughput features, FTIRS is an innovative and functional technology for typing probiotic strains from bench-top experiments to large-scale industrial production, allowing the monitoring of stability and identity of probiotic strains. In this study, the discriminatory power of FTIRS was assessed for four Lactiplantibacillus plantarum probiotic strains grown under different conditions, including temperatures (30 and 37°C) and medium (broth and agar), after consecutive sub-culturing steps. A comparison between the generated spectra with pulsed-field gel electrophoresis (PFGE) profiles was also performed. FTIRS was not only able to distinguish the strains of L. plantarum under different growth conditions but also to prove the phenotypic stability of L. plantarum type strain LP-CT after six growing steps. Regardless of the growth conditions, FTIRS spectra related to LP-CT constituted a unique hierarchical cluster, separated from the other L. plantarum strains. These results were confirmed by a PFGE analysis. In addition, based on FTIRS data, broth cultures demonstrated a higher reproducibility and discriminatory power with respect to agar ones. These results support the introduction of FTIRS in the probiotic industry, allowing for the step-by-step monitoring of massive microbial production while also guaranteeing the stability and purity of the probiotic strain. The proposed novel approach can constitute an impressive improvement in the probiotic manufacturing process
Probiotics for the prevention/treatment of human diseases and ecological study of the intestinal microbiota
The interest in human intestinal microbiota has increased in the last 20 years and significant advances have been achieved with regard to its composition and functions. The gut microbiota contributes to the maintenance of the host health status and, since alterations in the gut microbiota have been involved in the pathogenesis/progression of some diseases, several studies have focused on the manipulation of its composition. Probiotics are a strategy to maintain/restore the correct balance of gut microbial population and to prevent/treat diseases.
The aim of this thesis was to explore the possibility of probiotic supplementation for the prevention/treatment of human diseases and the related study of the intestinal microbial environment.
After reviewing studies concerning the use of Bifidobacterium breve as probiotic in paediatric diseases, the effectiveness of a probiotic formulation consisting of two strains of B. breve was assessed in paediatric subjects for the prevention or alleviation of gastrointestinal disorders, including coeliac disease and paediatric obesity. As the emerging role of gut microbiota in neurological diseases, the intestinal microbial environment in amyotrophic lateral sclerosis patients compared to healthy controls and the effects of a probiotic administration were examined. Considering the role of viruses in shaping gut microbiota, gut bacteriophages and bacterial community of preterm infants were investigated.
The results evidenced differences in gut microbial composition of healthy controls and diseased subjects in coeliac and amyotrophic lateral sclerosis patients. The probiotic approach was effective in restoring the microbial composition in the former, whereas, in the latter, the influence was focused only on some microbial groups. The probiotic intervention was effective in improving the glyco-insulinemic profile in obese children and in preventing gastrointestinal disorders in healthy newborns. The study of the bacterial and phage composition in preterm infants suggested a transkingdom interplay between bacteria and viruses with a reciprocal influence on their composition
Olive Mill Wastewater Valorization in Multifunctional Biopolymer Composites for Antibacterial Packaging Application
Olive mill wastewater (OMW) is the aqueous waste derived from the production of virgin olive oil. OMW typically contains a wide range of phenol-type molecules, which are natural antioxidants and/or antibacterials. In order to exploit the bioactive molecules and simultaneously decrease the environmental impact of such a food waste stream, OMW has been intercalated into the host structure of ZnAl layered double hydroxide (LDH) and employed as an integrative filler for the preparation of poly(butylene succinate) (PBS) composites by in situ polymerization. From the view point of the polymer continuous phase as well as from the side of the hybrid filler, an investigation was performed in terms of molecular and morphological characteristics by gel permeation chromatography (GPC) and X-ray diffraction (XRD); also, the thermal and mechanical properties were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMTA). Antibacterial properties have been assessed against a Gram-positive and a Gram-negative bacterium, Staphylococcus aureus and Escherichia coli, respectively, as representatives of potential agents of foodborne illnesses
Valorization of Coffee Silverskin in Green Particulate Composites based on PLA and PBS.
Food waste valorization, considered as energy and/or chemicals source, via biorefinery or biotechnology, gained great attention in recent years, because of the fast depletion of primary resources, increased waste generation and landfilling worldwide.
Coffee is one important, widespread source of by-products and waste (i.e. coffee pulp, coffee husks, silver skin, spent coffee, etc.). It has been investigated in different forms either as a source of antioxidant and valuable chemicals and as a filler in composites. Silver skin (SSK) for example, which is the integument surrounding the coffee beans, constitutes about the 3 wt% of the original treated product and after the roasting process, it becomes a by-product.
The valorization of SSK, up to now just sent to damping, is here investigated through the preparation of particulate biocomposites based on poly(lactic acid) (PLA) and poly(butylene succinate) (PBS), two of the most common aliphatic biodegradable polyesters, commercially available. In the current research a characterization of the polyphenols content and antioxidant activity of SSK, the tensile properties and dynamic mechanical response of the biocomposites together with their stability toward photo oxidation have been reported.
This approach has a high potential as to what concerns the application of renewable polymers, because some properties (i.e durability) can be improved, the amount of polymer matrix (presently more expensive than oil-derived materials) can be reduced, and the waste damping can be avoided
Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market
International audiencePolybutylene succinate (PBS) were processed in melt extrusion by dispersion of organo-modified layered double hydroxide (LDH). Depending on the organic anion interleaved into LDH fillers (L-tyrosine (TYR), L-tryptophan (TRP), L-ascorbate (ASA) and 3-(4-hydroxyphenyl)propionate (HPP)), it was possible to control and tune the properties of the resulting PBS composites. Each LDH filler is found to act differently toward PBS, thus modifying its viscoelastic properties (as expressed by a chain extending effect), its rate of hydrolysis and photo-degradation or its antibacterial activity. The highest chain extending effect was observed in the case of LDH with L-tryptophan, the worst – with L-ascorbate anion. However, L-ascorbate anions interleaved into LDH present 100% activity in antibacterial properties. A better compromise may be achieved when PBS is mixed with different LDHs such as those combining HPP and ASA, making possible to target efficiently multi-properties such as small rate of hydrolysis, photo-stability, biocide activity as well as chain extension, thus turning to a multifunctional (bio)nanocomposites with new possible applications. Finally, a possible scale-up is demonstrated on thin films
Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on gluten free diet
Coeliac disease (CD) is associated with alterations of the intestinal microbiota. Although several Bifidobacterium strains showed anti-inflammatory activity and prevention of toxic gliadin peptides generation in vitro, few data are available on their efficacy when administered to CD subjects. This study evaluated the effect of administration for three months of a food supplement based on two Bifidobacterium breve strains (B632 and BR03) to restore the gut microbial balance in coeliac children on a gluten free diet (GFD). Microbial DNA was extracted from faeces of 40 coeliac children before and after probiotic or placebo administration and 16 healthy children (Control group). Sequencing of the amplified V3-V4 hypervariable region of 16S rRNA gene as well as qPCR of Bidobacterium spp., Lactobacillus spp., Bacteroides fragilis group Clostridium sensu stricto and enterobacteria were performed. The comparison between CD subjects and Control group revealed an alteration in the intestinal microbial composition of coeliacs mainly characterized by a reduction of the Firmicutes/Bacteroidetes ratio, of Actinobacteria and Euryarchaeota. Regarding the effects of the probiotic, an increase of Actinobacteria was found as well as a re-establishment of the physiological Firmicutes/Bacteroidetes ratio. Therefore, a three-month administration of B. breve strains helps in restoring the healthy percentage of main microbial components
Data_Sheet_1_In-process real-time probiotic phenotypic strain identity tracking: The use of Fourier transform infrared spectroscopy.zip
Probiotic bacteria, capable of conferring benefits to the host, can present challenges in design, development, scale-up, manufacturing, commercialization, and life cycle management. Strain identification is one of the main quality parameters; nevertheless, this task can be challenging since established methodologies can lack resolution at the strain level for some microorganisms and\or are labor-intensive and time-consuming. Fourier transform infrared spectroscopy (FTIRS) has been largely used for the investigation of pathogenic species in the clinical field, whereas only recently has been proposed for the identification of probiotic strains. Within the probiotic industrial production, bacterial strains can be subjected to stressful conditions that may affect genomic and phenotypic characteristics; therefore, real-time monitoring of all the sequential growth steps is requested. Considering the fast, low-cost, and high-throughput features, FTIRS is an innovative and functional technology for typing probiotic strains from bench-top experiments to large-scale industrial production, allowing the monitoring of stability and identity of probiotic strains. In this study, the discriminatory power of FTIRS was assessed for four Lactiplantibacillus plantarum probiotic strains grown under different conditions, including temperatures (30 and 37°C) and medium (broth and agar), after consecutive sub-culturing steps. A comparison between the generated spectra with pulsed-field gel electrophoresis (PFGE) profiles was also performed. FTIRS was not only able to distinguish the strains of L. plantarum under different growth conditions but also to prove the phenotypic stability of L. plantarum type strain LP-CT after six growing steps. Regardless of the growth conditions, FTIRS spectra related to LP-CT constituted a unique hierarchical cluster, separated from the other L. plantarum strains. These results were confirmed by a PFGE analysis. In addition, based on FTIRS data, broth cultures demonstrated a higher reproducibility and discriminatory power with respect to agar ones. These results support the introduction of FTIRS in the probiotic industry, allowing for the step-by-step monitoring of massive microbial production while also guaranteeing the stability and purity of the probiotic strain. The proposed novel approach can constitute an impressive improvement in the probiotic manufacturing process.</p