1,500 research outputs found
Transmission Electron Study of Heteroepitaxial Growth in the BiSrCaCuO System
Films of BiSrCaCuO and BiSrCuO have been grown using Atomic-Layer-by-Layer Molecular Beam
Epitaxy (ALL-MBE) on lattice-matched substrates. These materials have been
combined with layers of closely-related metastable compounds like BiSrCaCuO (2278) and rare-earth-doped
compounds like BiSrDyCaCuO
(Dy:2212) to form heterostructures with unique superconducting properties,
including superconductor/insulator multilayers and tunnel junctions.
Transmission electron microscopy (TEM) has been used to study the morphology
and microstructure of these heterostructures. These TEM studies shed light on
the physical properties of the films, and give insight into the growth mode of
highly anisotropic solids like BiSrCaCuO.Comment: 17 pages, submitted to J. Materials Research. Email to
[email protected] if you want to receive copies of the figure
Josephson coupling through ferromagnetic heterojunctions with noncollinear magnetizations
We study the Josephson effect in clean heterojunctions that consist of
superconductors connected through two metallic ferromagnets with insulating
interfaces. We solve the scattering problem based on the Bogoliubov--de Gennes
equation for any relative orientation of in-plane magnetizations, arbitrary
transparency of interfaces, and mismatch of Fermi wave vectors. Both spin
singlet and triplet superconducting correlations are taken into account, and
the Josephson current is calculated as a function of the ferromagnetic layers
thicknesses and of the angle between their magnetizations. We find
that the critical Josephson current is a monotonic function of
when the junction is far enough from transitions. This holds when
ferromagnets are relatively weak. For stronger ferromagnets, variation of
induces switching between 0 and states and is
non-monotonic function, displaying characteristic dips at the transitions.
However, the non-monotonicity is the effect of a weaker influence of the
exchange potential in the case of non-parallel magnetizations. No substantial
impact of spin-triplet superconducting correlations on the Josephson current
has been found in the clean limit. Experimental control of the critical current
and transitions by varying the angle between magnetizations is
suggested.Comment: 7 pages, 8 figure
Developing Parameter-Reduction Methods on a Biophysical Model of Auditory Hair Cells
Biophysical models describing complex, cellular phenomena typically include
systems of nonlinear differential equations with many free parameters. While
experimental measurements can fix some parameters, those describing internal
cellular processes frequently remain inaccessible. Hence, a proliferation of
free parameters risks overfitting the data, limiting the model's predictive
power. In this study, we develop robust methods, applying statistical analysis
and dynamical-systems theory, to reduce a biophysical model's complexity. We
demonstrate our techniques on an elaborate computational model designed to
describe active, mechanical motility of auditory hair cells. Specifically, we
use two statistical measures, the total-effect and PAWN indices, to rank each
free parameter by its influence on selected, core properties of the model. With
the resulting ranking, we fix most of the less influential parameters, yielding
a low-parameter model with optimal predictive power. We validate the
theoretical model with experimental recordings of active hair-bundle motility,
specifically by using Akaike and Bayesian information criteria after obtaining
maximum-likelihood fits. As a result, we determine the system's most
influential parameters, which illuminate its key biophysical elements of the
cell's overall features. While we demonstrated our techniques on a concrete
example, they provide a general framework, applicable to other biophysical
systems
Genotoxicity assessment of piperitenone oxide: an in vitro and in silico evaluation
Piperitenone oxide, a natural flavouring agent also known as rotundifolone, has been studied for the genotoxicity assessment by an integrated in vitro and in silico experimental approach, including the bacterial reverse mutation assay, the micronucleus test, the comet assay and the computational prediction by Toxtree and VEGA tools. Under our experimental conditions, the monoterpene showed to induce both point mutations (i.e. frameshift, base-substitution and/or oxidative damage) and DNA damage (i.e. clastogenic or aneuploidic damage, or single-strand breaks). Computational prediction for piperitenone oxide agreed with the toxicological data, and highlighted the presence of the epoxide function and the α,β-unsaturated carbonyl as possible structural alerts for DNA damage. However, improving the toxicological libraries for natural occurring compounds is required in order to favour the applicability of in silico models to the toxicological predictions. Further in vivo evaluations are strictly needed in order to evaluate the role of the bioavailability of the substance and the metabolic fate on its genotoxicity profile. To the best of our knowledge, these data represent the first evaluation of the genotoxicity for this flavour compound and suggest the need of further studies to assess the safety of piperitenone oxide as either flavour or fragrance chemicals
Interface superconductivity: History, developments and prospects
The concept of interface superconductivity was introduced over 50 years ago. Some of the greatest physicists of that time wondered whether a quasi-two-dimensional (2D) superconductor can actually exist, what are the peculiarities of 2D superconductivity, and how does the reduced dimensionality affect the critical temperature (Tc). The discovery of high-temperature superconductors, which are composed of coupled 2D superconducting layers, further increased the interest in reduced dimensionality structures. In parallel, the advances in experimental techniques made it possible to grow epitaxial 2D structures with atomically flat surfaces and interfaces, enabling some of the experiments that were proposed decades ago to be performed finally. Now we know that interface superconductivity can occur at the junction of two different materials (metals, insulators, semiconductors). This phenomenon is being explored intensely; it is also exploited as a means to increase Tc or to study quantum critical phenomena. This research may or may not produce a superconductor with a higher Tc or a useful superconducting electronic device but it will likely bring in new insights into the physics underlying high-temperature superconductivity
Photoemission Evidence for a Remnant Fermi Surface and d-Wave-Like Dispersion in Insulating Ca2CuO2Cl2
An angle resolved photoemission study on Ca2CuO2Cl2, a parent compound of
high Tc superconductors is reported. Analysis of the electron occupation
probability, n(k) from the spectra shows a steep drop in spectral intensity
across a contour that is close to the Fermi surface predicted by the band
calculation. This analysis reveals a Fermi surface remnant even though
Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion
with approximately the |cos(kxa)-cos(kya)| form along this remnant Fermi
surface. Together with the data from Dy doped Bi2Sr2CaCu2O(8 + delta) these
results suggest that this d-wave like dispersion of the insulator is the
underlying reason for the pseudo gap in the underdoped regime.Comment: 9 pages, including 7 figures. Published in Science, one figure
correcte
Epitaxial growth of high quality WO3 thin films
We have grown epitaxial WO3 films on various single-crystal substrates using radio frequency magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on Y AlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. The dependence of the growth modes and the surface morphology on the lattice mismatch are discussed
- …