19 research outputs found

    Deformation effects in Giant Monopole Resonance

    Full text link
    The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical 144^{144}Sm to deformed 148−154^{148-154}Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.Comment: 6 pages, 4 figures, proceedings of 11th Intern. Spring Seminar on Nuclear Physics (Ischia, Italy, May 12-16, 2014

    Toroidal, compression, and vortical dipole strengths in 144−154^{144-154}Sm: Skyrme-RPA exploration of deformation effect

    Full text link
    A comparative analysis of toroidal, compressional and vortical dipole strengths in the spherical 144^{144}Sm and the deformed 154^{154}Sm is performed within the random-phase-approximation using a set of different Skyrme forces. Isoscalar (T=0), isovector (T=1), and electromagnetic excitation channels are considered. The role of the nuclear convection jconj_{\text{con}} and magnetization jmagj_{\text{mag}} currents is inspected. It is shown that the deformation leads to an appreciable redistribution of the strengths and causes a spectacular deformation splitting (exceeding 5 MeV) of the isoscalar compressional mode. In 154^{154}Sm, the μ\mu=0 and μ\mu=1 branches of the mode form well separated resonances. When stepping from 144^{144}Sm to 154^{154}Sm, we observe an increase of the toroidal, compression and vortical contributions in the low-energy region (often called pygmy resonance). The strength in this region seems to be an overlap of various excitation modes. The energy centroids of the strengths depend significantly on the isoscalar effective mass m0m_0. Skyrme forces with a large m0m_0 (typically m0/m≈0.8−1m_0/m \approx 0.8 - 1) seem to be more suitable for description of experimental data for the isoscalar giant dipole resonance.Comment: 13 pages, 10 figures, submitted to EJP

    Leveraging analytics to produce compelling and profitable film content

    Get PDF
    Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user generated content and original content produced by Subscription Video on Demand (SVOD) platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications
    corecore