17 research outputs found

    Low-damping transmission of spin waves through YIG/Pt-based layered structures for spin-orbit-torque applications

    Full text link
    We show that in YIG-Pt bi-layers, which are widely used in experiments on the spin transfer torque and spin Hall effects, the spin-wave amplitude significantly decreases in comparison to a single YIG film due to the excitation of microwave eddy currents in a Pt coat. By introducing a novel excitation geometry, where the Pt layer faces the ground plane of a microstrip line structure, we suppressed the excitation of the eddy currents in the Pt layer and, thus, achieved a large increase in the transmission of the Damon-Eshbach surface spin wave. At the same time, no visible influence of an external dc current applied to the Pt layer on the spin-wave amplitude in the YIG-Pt bi-layer was observed in our experiments with YIG films of micrometer thickness

    Temperature dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    Full text link
    Low energy consumption enabled by charge-free information transport, which is free from ohmic heating, and the ability to process phase-encoded data by nanometer-sized interference devices at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons−-spin-wave quanta−-is of high relevance for the fields of magnonics, magnon spintronics and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wavenumbers from zero up to 6⋅105rad cm−16\cdot 10^5 \mathrm{rad~cm}^{-1} was experimentally investigated in the temperature range from 20 K to 340 K in single crystal yttrium iron garnet (YIG) films epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal−-the magnonic materials featuring the lowest magnetic damping known so far. As opposed to the bulk YIG crystal in YIG films we have found a significant increase in the magnon relaxation rate below 150 K−-up to 10.5 times the reference value at 340 K−-in the entire range of probed wavenumbers. This increase is associated with rare-earth impurities contaminating the YIG samples with a slight contribution caused by coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures

    Double accumulation and anisotropic transport of magneto-elastic bosons in yttrium iron garnet films

    Full text link
    Interaction between quasiparticles of a different nature, such as magnons and phonons in a magnetic medium, leads to the mixing of their properties and the formation of hybrid states in the areas of intersection of individual spectral branches. We recently reported the discovery of a new phenomenon mediated by the magnon-phonon interaction: the spontaneous bottleneck accumulation of magneto-elastic bosons under electromagnetic pumping of pure magnons into a ferrimagnetic yttrium iron garnet film. Here, by studying the transport properties of the accumulated magneto-elastic bosons, we reveal that such accumulation occurs in two frequency-distant groups of quasiparticles: quasi-phonons and quasi-magnons. They propagate with different speeds in different directions relative to the magnetization field. The theoretical model we propose qualitatively describes the double accumulation effect, and the analysis of the two-dimensional spectrum of quasiparticles in the hybridization region allows us to determine the wavevectors and frequencies of each of the groups

    Tunable space-time crystal in room-temperature magnetodielectrics

    Full text link
    We report the experimental realization of a space-time crystal with tunable periodicity in time and space in the magnon Bose-Einstein Condensate (BEC), formed in a room-temperature Yttrium Iron Garnet (YIG) film by radio-frequency space-homogeneous magnetic field. The magnon BEC is prepared to have a well defined frequency and non-zero wavevector. We demonstrate how the crystalline "density" as well as the time and space textures of the resulting crystal may be tuned by varying the experimental parameters: external static magnetic field, temperature, thickness of the YIG film and power of the radio-frequency field. The proposed space-time crystals provide a new dimension for exploring dynamical phases of matter and can serve as a model nonlinear Floquet system, that brings in touch the rich fields of classical nonlinear waves, magnonics and periodically driven systems

    Microwave magnon damping in YIG films at millikelvin temperatures

    Full text link
    Magnon systems used in quantum devices require low damping if coherence is to be maintained. The ferrimagnetic electrical insulator yttrium iron garnet (YIG) has low magnon damping at room temperature and is a strong candidate to host microwave magnon excitations in future quantum devices. Monocrystalline YIG films are typically grown on gadolinium gallium garnet (GGG) substrates. In this work, comparative experiments made on YIG waveguides with and without GGG substrates indicate that the material plays a significant role in increasing the damping at low temperatures. Measurements reveal that damping due to temperature-peak processes is dominant above 1 K. Damping behaviour that we show can be attributed to coupling to two-level fluctuators (TLFs) is observed below 1 K. Upon saturating the TLFs in the substrate-free YIG at 20 mK, linewidths of 1.4 MHz are achievable: lower than those measured at room temperature.Comment: 5 pages, 4 figure

    Long-distance supercurrent transport in a room-temperature Bose-Einstein magnon condensate

    Full text link
    The term supercurrent relates to a macroscopic dissipation-free collective motion of a quantum condensate and is commonly associated with such famous low-temperature phenomena as superconductivity and superfluidity. Another type of motion of quantum condensates is second sound - a wave of the density of a condensate. Recently, we reported on an enhanced decay of a parametrically induced Bose-Einstein condensate (BEC) of magnons caused by a supercurrent outflow of the BEC phase from the locally heated area of a room temperature magnetic film. Here, we present the direct experimental observation of a long-distance spin transport in such a system. The condensed magnons being pushed out from the potential well within the heated area form a density wave, which propagates through the BEC many hundreds of micrometers in the form of a specific second sound pulse - Bogoliubov waves - and is reflected from the sample edge. The discovery of the long distance supercurrent transport in the magnon BEC further advances the frontier of the physics of quasiparticles and allows for the application of related transport phenomena for low-loss data transfer in perspective magnon spintronics devices

    Strong magnon-photon coupling with chip-integrated YIG in the zero-temperature limit

    Get PDF
    The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon-polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3_{3}Fe5_{5}O12_{12}, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have thus far prevented its incorporation into CMOS compatible technology such as high quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology -- taking advantage of precision placement down to the micron-scale -- to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at millikelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonator and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micron scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices that advantage from spin-wave and superconducting components.Comment: 10 pages, 6 figure
    corecore