8 research outputs found

    Advanced Robotic Grasping System Using Deep Learning

    Get PDF
    AbstractObject grasping by robot hands is challenging due to the hand and object modeling uncertainties, unknown contact type and object stiffness properties. To overcome these challenges, the essential purpose is to achieve the mathematical model of the robot hand, model the object and the contact between the object and the hand. In this paper, an intelligent hand-object contact model is developed for a coupled system assuming that the object properties are known. The control is simulated in the Matlab Simulink/SimMechanics, Neural Network Toolbox and Computer Vision System Toolbox

    Diagnostic methods and ways of testing the workability of coal - a review

    Full text link
    The need to classify rocks in terms of workability stems primarily from the need to choose the appropriate, most effective diagnostic method (DM) and way of mining the given rock. Studying and measuring the workability of rocks is extremely difficult due to the fact that workability depends on many various factors. There are many DM for determining the workability of rocks, but none of them take into account the influence of all factors, hence the obtained results are only indicative. In the article, many DM and ways of determining the cutting resistance with the use of various devices are presented and characterized. The principles of their operations are presented, as well as the DM of measuring the cutting resistance and its utilitarian usefulness in forecasting the selection of mining machines on the basis of cutting for specific mining and geological conditions. The core of the problem is confirmed by the number of covered DM and tools in various research centers around the world. In the article, new tools measuring and evaluating the mechanical properties of the coal solid, all created in Poland, are presented. Their structure, principles of their operation, as well as the innovation of these solutions, are all presented. In this article, their ad-vantages and disadvantages are highlighted, as well as showing the DM which best represents the way of work of the winning machine. Therefore, the results achieved through the aforementioned DM can be understood as representative values

    The method of high accuracy calculation of robot trajectory for the complex curves

    Full text link
    The geometric model accuracy is crucial for product design. More complex surfaces are represented by the approximation methods. On the contrary, the approximation methods reduce the design quality. A new alternative calculation method is proposed. The new method can calculate both conical sections and more complex curves. The researcher is able to get an analytical solution and not a sequence of points with the destruction of the object semantics. The new method is based on permutation and other symmetries and should have an origin in the internal properties of the space. The classical method consists of finding transformation parameters for symmetrical conic profiles, however a new procedure for parameters of linear transformations determination was acquired by another method. The main steps of the new method are theoretically presented in the paper. Since a double result is obtained in most stages, the new calculation method is easy to verify. Geometric modeling in the AutoCAD environment is shown briefly. The new calculation method can be used for most complex curves and linear transformations. Theoretical and practical researches are required additionally

    Convolutional neural networks training for autonomous robotics

    Full text link
    The article discusses methods for accelerating the operation of convolutional neural networks for autonomous robotics learning. The analysis of the theoretical possibility of modifying the neural network learning mechanism is carried out. Classic semiotic analysis and the theory of neural networks is proposed to union. An assumption is made about the possibility of using the symmetry mechanism to accelerate the training of convolutional neural networks. A multilayer neural network to represent how space is an attempt has been made. The conclusion was based on the laws on the plane obtained earlier. The derivation of formulas turned out to be impossible due to the problems of modern mathematics. A new approach is proposed, which involves combining the gradient descent algorithm and the stochastic completion of convolutional filters by the principles of symmetries. The identified algorithms allow increasing the learning rate from 5% to 15%, depending on the problem that the neural network solves

    The design technique of melting units for production of synthetic ifbrous materials by vertical blowing method

    Full text link
    This paper presents the technology of production of synthetic fibrous materials from PET-row by vertical blowing method. The formation of fibers from the melt of thermoplastics by vertical blowing method is accompanied by complex and specific phenomena, so creation of new progressive technologies, high-performance machines and units for producing such materials is impossible without process modeling, which can significantly reduce the number of natural tests, cost and development time and choose optimal operating modes. The motion of the molten material in the melting unit of the hydrostatic type is determined from the Poiseuille formula. Also in the article proved that the greatest impact on process productivity is made by the melting unit, exactly by outlet radius and the pressure change of compressed air, acting on the molten material surface. The increase in the height of the molten material column in the main cylindrical chamber of melting unit also leads to increase of process productivity

    RELIABILITY DETERMINATION AND DIAGNOSTICS OF A MECHATRONIC SYSTEM

    Full text link
    In order to reduce the number and time of layups and to increase the period of effective operation of a mechatronic system it is reasonable to carry out predictive recovery works during one stoppage (repair) for a group of component parts with equal, close or multiple operation hours to the prior-to-failure (limiting) state. Such approach gives also the possibility to carry out recovery works with separate elements in parallel, which allows to reduce the system layup time and to increase the production output

    Modeling of Boring Mandrel Working Process with Vibration Damper

    Full text link
    The article considers the issue of modeling the oscillations of a boring mandrel with vibration damper connected to the mandrel with a viscoelastic coupling. A mathematical model of the boring mandrel oscillations, machine support and inertial body (damper) is developed in the form of a differential equations system. The model is made in the form of a four-mass system of connected bodies. The solution to the differential equations system was found using the finite difference method, as well as the operator method with the use of the Laplace transform. As the simulation result, it was found that the use of vibration damper can significantly reduce the amplitude of the boring mandrel natural vibrations when pulsed, and also significantly reduce the forced vibrations amplitude when exposed to periodic disturbing forces. The developed mathematical model and algorithms for the numerical solution to the differential equations allowed us to choose the optimal parameters of the boring mandrel damping element. The obtained data will be used to create a prototype boring mandrel and conduct field tests
    corecore