1,396 research outputs found
Film density analyzers for infrared investigations
Joyce-Loebl microdensitometer-isodensitracer for infrared film density analysi
Multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises
This paper examines multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises
Dedication in Memory of William Dewey Rollison
William Dewey Rollison, Professor of Law Emeritus: University of Notre Dame 1897-197
A New Version of Reimers' law of Mass Loss Based on a Physical Approach
We present a new semi-empirical relation for the mass loss of cool stellar
winds, which so far has frequently been described by "Reimers' law".
Originally, this relation was based solely on dimensional scaling arguments
without any physical interpretation. In our approach, the wind is assumed to
result from the spill-over of the extended chromosphere, possibly associated
with the action of waves, especially Alfven waves, which are used as guidance
in the derivation of the new formula. We obtain a relation akin to the original
Reimers law, but which includes two new factors. They reflect how the
chromospheric height depends on gravity and how the mechanical energy flux
depends, mainly, on effective temperature. The new relation is tested and
sensitively calibrated by modelling the blue end of the Horizontal Branch of
globular clusters. The most significant difference from mass loss rates
predicted by the Reimers relation is an increase by up to a factor of 3 for
luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter
Post impact evaluation of an E-learning cross-infection control CD-ROM provided to all general dental practitioners in England
Aim To carry out a post-impact evaluation of a cross-infection control CD-ROM, developed for NHS dental teams as a continuing professional development e-learning tool. The program was commissioned by the Department of Health and developed by a project team through the UK Committee of Postgraduate Dental Deans. The Dental Practice Boardhad originally sent one copy of the CD-ROM to each dental practice in England in 2004. Method A quantitative statistical analysis of the results of 326 online respondents to the learning package and a survey of 118 dental practitioners drawn from the Dental Practice Board database. Results Practitioners felt the CD-ROM in this instance was well designed and appropriate for their needs. It is inclusive and accessible to a wide range of dental professionals including nurses and hygienists. Conclusions This form of continuing professional development is popular with dental practitioners, although it should not be the only form of continuing professional development available. However, whilst the project was generally regarded as successful, there were problems with the distribution of the CD-ROM. This suggests that anonline resource should be made available in the future
Electron flux models for different energies at geostationary orbit
Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30–50 keV, 50–100 keV, 100–200 keV, 200–350 keV, and 350–600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%
Comparative analysis of NOAA REFM and SNB 3 GEO tools for the forecast of the fluxes of high-energy electrons at GEO
Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field Bz observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast
Pulsar Constraints on Neutron Star Structure and Equation of State
With the aim of constraining the structural properties of neutron stars and
the equation of state of dense matter, we study sudden spin-ups, glitches,
occurring in the Vela pulsar and in six other pulsars. We present evidence that
glitches represent a self-regulating instability for which the star prepares
over a waiting time. The angular momentum requirements of glitches in Vela
indicate that at least 1.4% of the star's moment of inertia drives these
events. If glitches originate in the liquid of the inner crust, Vela's
`radiation radius' must exceed ~12 km for a mass of 1.4 solar masses.
Observational tests of whether other neutron stars obey this constraint will be
possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter
Probing the Neutron Star Interior with Glitches
With the aim of constraining the structural properties of neutron stars and
the equation of state of dense matter, we study sudden spin-ups, glitches,
occurring in the Vela pulsar and in six other pulsars. We present evidence that
glitches represent a self-regulating instability for which the star prepares
over a waiting time. The angular momentum requirements of glitches in Vela
indicate that at least 1.4% of the star's moment of inertia drives these
events. If glitches originate in the liquid of the inner crust, Vela's
`radiation radius' must exceed ~12 km for a mass of 1.4 solar
masses. The isolated neutron star RX J18563-3754 is a promising candidate for a
definitive radius measurement, and offers to further our understanding of dense
matter and the origin of glitches.Comment: Invited talk at the Pacific Rim Conference on Stellar Astrophysics,
Hong Kong, Aug. 1999. 9 pages, 5 figure
Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction
A general analysis of thermal noise in torsion pendulums is presented. The
specific case where the torsion angle is kept fixed by electronic feedback is
analyzed. This analysis is applied to a recent experiment that employed a
torsion pendulum to measure the Casimir force. The ultimate limit to the
distance at which the Casimir force can be measured to high accuracy is
discussed, and in particular the prospects for measuring the thermal correction
are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev
- …