205 research outputs found

    Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging

    Get PDF
    SummaryObjectiveThe purpose of this study is to evaluate the ability of machine learning to discriminate between magnetic resonance images (MRI) of normal and pathological human articular cartilage obtained under standard clinical conditions.MethodAn approach to MRI classification of cartilage degradation is proposed using pattern recognition and multivariable regression in which image features from MRIs of histologically scored human articular cartilage plugs were computed using weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHRM). The WND-CHRM method was first applied to several clinically available MRI scan types to perform binary classification of normal and osteoarthritic osteochondral plugs based on the Osteoarthritis Research Society International (OARSI) histological system. In addition, the image features computed from WND-CHRM were used to develop a multiple linear least-squares regression model for classification and prediction of an OARSI score for each cartilage plug.ResultsThe binary classification of normal and osteoarthritic plugs yielded results of limited quality with accuracies between 36% and 70%. However, multiple linear least-squares regression successfully predicted OARSI scores and classified plugs with accuracies as high as 86%. The present results improve upon the previously-reported accuracy of classification using average MRI signal intensities and parameter values.ConclusionMRI features detected by WND-CHRM reflect cartilage degradation status as assessed by OARSI histologic grading. WND-CHRM is therefore of potential use in the clinical detection and grading of osteoarthritis

    The Kety-Schmidt Technique for Quantitative Perfusion and Oxygen Metabolism Measurements in the MR Imaging Environment

    Get PDF
    The Kety-Schmidt technique provides quantitative measurement of whole brain cerebral blood flow (CBF). CBF is measured as the area between the arterial and venous washout curves of a diffusible tracer. Oxygen extraction and metabolism may be calculated from arterial and venous samples. In this report we present a method for performing these measurements in an MR environment. This technique could be useful for validation of MR methods of hemodynamic and metabolic measurements in humans

    Body mass index, but not FTO genotype or major depressive disorder, influences brain structure

    Get PDF
    Obesity and major depressive disorder (MDD) are highly prevalent and often comorbid health conditions. Both are associated with differences in brain structure and are genetically influenced. Yet, little is known about how obesity, MDD, and known risk genotypes might interact in the brain. Subjects were 81 patients with MDD (mean age 48.6 years) and 69 matched healthy controls (mean age 51.2 years). Subjects underwent 1.5T magnetic resonance imaging, genotyping for the fat mass and obesity associated (FTO) gene rs3751812 polymorphism, and measurements for body mass index (BMI). We conducted a whole brain voxelwise analysis using tensor-based morphometry (TBM) to examine the main and interaction effects of diagnosis, BMI and FTO genotype. Significant effects of BMI were observed across widespread brain regions, indicating reductions in predominantly subcortical and white matter areas associated with increased BMI, but there was no influence of MDD or FTO rs3751812 genotype. There were no significant interaction effects. Within MDD patients, there was no effect of current depressive symptoms; however the use of antidepressant medication was associated with reductions in brain volume in the frontal lobe and cerebellum. Obesity affects brain structure in both healthy participants and MDD patients; this influence may account for some of the brain changes previously associated with MDD. BMI and the use of medication should ideally be measured and controlled for when conducting structural brain imaging research in MDD

    ASTRO-F - The next generation of mid-infrared surveys

    Full text link
    We present basic observational strategies for ASTRO-F (also known as the Imaging Infra Red Surveyor (IRIS)) to be launched in 2004 by the Japanese Institute of Space and Astronautical Science (ISAS). We examine 2 survey scenarios, a deep ~1sq.deg. survey reaching sensitivities an order of magnitude below than the deepest surveys performed by ISO in the mid-IR, and a shallow \~18sq.deg mid-infrared (7-25um in 6 bands) covering an area greater than the entire area covered by all ISO mid-IR surveys. Using 2 cosmological models the number of galaxies predicted for each survey is calculated. The first model uses an enhancement of the pure luminosity evolution model of Pearson & Rowan-Robinson while the new models incorporate a strongly evolving ULIG component. For the deep survey, between 20,000-30,000 galaxies should be detected in the shortest wavebands and ~5000 in the longest (25um) band. The shallow survey would be expected to detect of the order of 100,000 - 150,000 sources.Comment: 17 pages, 13 figures, accepted by MNRA

    Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

    Get PDF
    The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables. Submitted to Physics Letters B. v2 fixes technical errors in matching authors to institutions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

    Full text link
    The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Improved Measurement of Double Helicity Asymmetry in Inclusive Midrapidity pi^0 Production for Polarized p+p Collisions at sqrt(s)=200 GeV

    Get PDF
    We present an improved measurement of the double helicity asymmetry for pi^0 production in polarized proton-proton scattering at sqrt(s) = 200 GeV employing the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The improvements to our previous measurement come from two main factors: Inclusion of a new data set from the 2004 RHIC run with higher beam polarizations than the earlier run and a recalibration of the beam polarization measurements, which resulted in reduced uncertainties and increased beam polarizations. The results are compared to a Next to Leading Order (NLO) perturbative Quantum Chromodynamics (pQCD) calculation with a range of polarized gluon distributions.Comment: 389 authors, 4 pages, 2 tables, 1 figure. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore