5 research outputs found

    The molecular structure of the DNA fragments eliminated during chromatin diminution in Cyclops kolensis

    No full text
    Presumptive somatic cells of the copepod Cyclops kolensis specifically eliminate a large fraction of their genome by the process of chromatin diminution. The eliminated DNA (eDNA) remains only in the germline cells. Very little is known about the nature of the sequences eliminated from somatic cells. We cloned a fraction of the eDNA and sequenced 90 clones that total 32 kb. The following organizational patterns were demonstrated for the eDNA sequences. All do not contain open reading frames. Each fragment contains 1–3 families of short repeats (10–30 bp) highly homologous within families (87%–100%). Most repeats are separated by spacers up to 50 bp long. Homologous regions were found between fragments, motifs from 15–300 bp in length. Among fragments there occur groups in which the same motifs are ordered in the same fashion. However, spacers between the motifs differ in length and nucleotide composition. Ubiquitous motifs (those occurring in all fragments) were identified. Analysis of motifs revealed submotifs, each occurring within several motifs. Thus, motifs may be regarded as mosaic structures composed of submotifs (short repeats). Taken together, the results provide evidence of a high organizational ordering of the DNA sequences restricted to the germline. With this in mind, it appears incorrect to refer to this part of the genome as junk. Moreover, eDNA is redundant for only the somatic cells—its function is to be sought in germline cells

    Molecular characterization of the <it>singed wings </it>locus of <it>Drosophila melanogaster</it>

    No full text
    Abstract Background Hormones frequently guide animal development via the induction of cascades of gene activities, whose products further amplify an initial hormonal stimulus. In Drosophila the transformation of the larva into the pupa and the subsequent metamorphosis to the adult stage is triggered by changes in the titer of the steroid hormone 20-hydroxyecdysone. singed wings (swi) is the only gene known in Drosophila melanogaster for which mutations specifically interrupt the transmission of the regulatory signal from early to late ecdysone inducible genes. Results We have characterized singed wings locus, showing it to correspond to EG:171E4.2 (CG3095). swi encodes a predicted 68.5-kDa protein that contains N-terminal histidine-rich and threonine-rich domains, a cysteine-rich C-terminal region and two leucine-rich repeats. The SWI protein has a close homolog in D. melanogaster, defining a new family of SWI-like proteins, and is conserved in D. pseudoobscura. A lethal mutation, swit476, shows a severe disruption of the ecdysone pathway and is a C>Y substitution in one of the two conserved CysXCys motifs that are common to SWI and the Drosophila Toll-4 protein. Conclusions It is not entirely clear from the present molecular analysis how the SWI protein may function in the ecdysone induced cascade. Currently all predictions agree in that SWI is very unlikely to be a nuclear protein. Thus it probably exercises its control of "late" ecdysone genes indirectly. Apparently the genetic regulation of ecdysone signaling is much more complex then was previously anticipated.</p

    Antibiotic Activity of Actinobacteria from the Digestive Tract of Millipede <i>Nedyopus dawydoffiae</i> (Diplopoda)

    No full text
    Because of the spread of drug resistance, it is necessary to look for new antibiotics that are effective against pathogenic microorganisms. The purpose of this study was to analyse the species composition of actinobacteria isolated from the digestive tract of the millipedes Nedyopus dawydoffiae and to determine their antimicrobial properties. Species identification was carried out on the basis of the morphological and culture properties and the sequence of the 16S rRNA gene. Actinobacteria were grown in different liquid media. Antibiotic properties were determined against some Gram-positive and Gram-negative bacteria as well as fungi. Of the 15 isolated strains, 13 have antibiotic activity against Gram-positive bacteria (including methicillin-resistant Staphylococcus aureus&#8212;MRSA) and fungi, but there was no antibiotic activity against Gram-negative test strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. It was established that antibiotic-producing actinobacteria belong to eight species of the genus Streptomyces. Depending on the nutrient medium, actinobacteria demonstrate different antimicrobial activities. As an example, S. hydrogenans shows that even strains selected in one population differ by the range of antimicrobial activity and the level of biosynthesis. Since the antibiotic production is considered as a feature for species competition in the microbiota community, the variability of antibiotic production among different strains of the same species is an adaptive characteristic for the competition in millipedes&#8217; digestive tract community
    corecore