197 research outputs found

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms

    Full text link
    ReParameterization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics. However, recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes with exploding gradient variance, which leads to slow convergence. This is in contrast to the conventional belief that reparameterization methods have low gradient estimation variance in problems such as training deep generative models. To comprehend this phenomenon, we conduct a theoretical examination of model-based RP PGMs and search for solutions to the optimization difficulties. Specifically, we analyze the convergence of the model-based RP PGMs and pinpoint the smoothness of function approximators as a major factor that affects the quality of gradient estimation. Based on our analysis, we propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls. Our experimental results demonstrate that proper normalization significantly reduces the gradient variance of model-based RP PGMs. As a result, the performance of the proposed method is comparable or superior to other gradient estimators, such as the Likelihood Ratio (LR) gradient estimator. Our code is available at https://github.com/agentification/RP_PGM.Comment: Published at NeurIPS 202

    Stability of the Kalman Filter for Output Error Systems

    Get PDF
    International audienceOptimality and numerical efficiency are well known properties of the Kalman filter, whereas its stability property, though equally classical and important in practice, is less often mentioned in the recent literature. The stability of the Kalman filter is usually ensured by the uniform complete controllability regarding the process noise and the uniform complete observability of linear time varying systems. Such classical results cannot be applied to output error systems, in which the process noise is totally absent. It is shown in this paper that the uniform complete observability is sufficient to ensure the stability of the Kalman filter applied to time varying output error systems, regardless of the stability of the considered system itself

    Stability of the Kalman filter for continuous time output error systems

    Get PDF
    International audienceThe stability of the Kalman filter is usually ensured by the uniform complete controllability regarding the process noise and the uniform complete observability of linear time varying systems. This paper studies the case of continuous time output error systems, in which the process noise is totally absent. The classical stability analysis assuming the controllability regarding the process noise is thus not applicable. It is shown in this paper that the uniform complete observability alone is sufficient to ensure the asymptotic stability of the Kalman filter applied to time varying output error systems, regardless of the stability of the considered systems themselves. The exponential or polynomial convergence of the Kalman filter is then further analyzed for particular cases of stable or unstable output error systems

    Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning

    Full text link
    Pair trading is one of the most effective statistical arbitrage strategies which seeks a neutral profit by hedging a pair of selected assets. Existing methods generally decompose the task into two separate steps: pair selection and trading. However, the decoupling of two closely related subtasks can block information propagation and lead to limited overall performance. For pair selection, ignoring the trading performance results in the wrong assets being selected with irrelevant price movements, while the agent trained for trading can overfit to the selected assets without any historical information of other assets. To address it, in this paper, we propose a paradigm for automatic pair trading as a unified task rather than a two-step pipeline. We design a hierarchical reinforcement learning framework to jointly learn and optimize two subtasks. A high-level policy would select two assets from all possible combinations and a low-level policy would then perform a series of trading actions. Experimental results on real-world stock data demonstrate the effectiveness of our method on pair trading compared with both existing pair selection and trading methods.Comment: 10 pages, 6 figure
    • …
    corecore