11,720 research outputs found
A strongly goal-directed close-range vision system for spacecraft docking
In this presentation, we will propose a strongly goal-oriented stereo vision system to establish proper docking approach motions for automated rendezvous and capture (AR&C). From an input sequence of stereo video image pairs, the system produces a current best estimate of: contact position; contact vector; contact velocity; and contact orientation. The processing demands imposed by this particular problem and its environment dictate a special case solution; such a system should necessarily be, in some sense, minimalist. By this we mean the system should construct a scene description just sufficiently rich to solve the problem at hand and should do no more processing than is absolutely necessary. In addition, the imaging resolution should be just sufficient. Extracting additional information and constructing higher level scene representations wastes energy and computational resources and injects an unnecessary degree of complexity, increasing the likelihood of malfunction. We therefore take a departure from most prior stereopsis work, including our own, and propose a system based on associative memory. The purpose of the memory is to immediately associate a set of motor commands with a set of input visual patterns in the two cameras. That is, rather than explicitly computing point correspondences and object positions in world coordinates and trying to reason forward from this information to a plan of action, we are trying to capture the essence of reflex behavior through the action of associative memory. The explicit construction of point correspondences and 3D scene descriptions, followed by online velocity and point of impact calculations, is prohibitively expensive from a computational point of view for the problem at hand. Learned patterns on the four image planes, left and right at two discrete but closely spaced instants in time, will be bused directly to infer the spacecraft reaction. This will be a continuing online process as the docking collar approaches
Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic
Four-wave mixing near resonance in an atomic vapor can produce relative
intensity squeezed light suitable for precision measurements beyond the
shot-noise limit. We develop an analytic distributed gain/loss model to
describe the competition of mixing and absorption through the non-linear
medium. Using a novel matrix calculus, we present closed-form expressions for
the degree of relative intensity squeezing produced by this system. We use
these theoretical results to analyze experimentally measured squeezing from a
Rb vapor and demonstrate the analytic model's utility as an experimental
diagnostic.Comment: 10 pages, 5 figure
Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures
Studying the topological aspects of M-branes in M-theory leads to various
structures related to Wu classes. First we interpret Wu classes themselves as
twisted classes and then define twisted notions of Wu structures. These
generalize many known structures, including Pin^- structures, twisted Spin
structures in the sense of Distler-Freed-Moore, Wu-twisted differential
cocycles appearing in the work of Belov-Moore, as well as ones introduced by
the author, such as twisted Membrane and twisted String^c structures. In
addition, we introduce Wu^c structures, which generalize Pin^c structures, as
well as their twisted versions. We show how these structures generalize and
encode the usual structures defined via Stiefel-Whitney classes.Comment: 20 page
Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor
We have observed the ultraslow propagation of matched pulses in nondegenerate
four-wave mixing in a hot atomic vapor. Probe pulses as short as 70 ns can be
delayed by a tunable time of up to 40 ns with little broadening or distortion.
During the propagation, a probe pulse is amplified and generates a conjugate
pulse which is faster and separates from the probe pulse before getting locked
to it at a fixed delay. The precise timing of this process allows us to
determine the key coefficients of the susceptibility tensor. The presence of
gain in this system makes this system very interesting in the context of
all-optical information processing.Comment: 5 pages, 4 figure
Grover's Quantum Search Algorithm for an Arbitrary Initial Mixed State
The Grover quantum search algorithm is generalized to deal with an arbitrary
mixed initial state. The probability to measure a marked state as a function of
time is calculated, and found to depend strongly on the specific initial state.
The form of the function, though, remains as it is in the case of initial pure
state. We study the role of the von Neumann entropy of the initial state, and
show that the entropy cannot be a measure for the usefulness of the algorithm.
We give few examples and show that for some extremely mixed initial states
carrying high entropy, the generalized Grover algorithm is considerably faster
than any classical algorithm.Comment: 4 pages. See http://www.cs.technion.ac.il/~danken/MSc-thesis.pdf for
extended discussio
Algebraic analysis of quantum search with pure and mixed states
An algebraic analysis of Grover's quantum search algorithm is presented for
the case in which the initial state is an arbitrary pure quantum state of n
qubits. This approach reveals the geometrical structure of the quantum search
process, which turns out to be confined to a four-dimensional subspace of the
Hilbert space. This work unifies and generalizes earlier results on the time
evolution of the amplitudes during the quantum search, the optimal number of
iterations and the success probability. Furthermore, it enables a direct
generalization to the case in which the initial state is a mixed state,
providing an exact formula for the success probability.Comment: 13 page
- …