16,211 research outputs found

    Positive ion temperatures above the F-layer maximum

    Get PDF
    Positive ion temperatures above F layer maximum from Ariel I satellite ion mass analyze

    A synoptic view of ionic constitution above the F-layer maximum

    Get PDF
    Ionic composition above F layer maximum from Ariel I satellite ion mass spectromete

    Optically mediated nonlinear quantum optomechanics

    Full text link
    We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized cavity field mode for linear and quadratic coupling. We focus specifically on situations where the optical dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated, resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling, the coherent contribution to the interaction can be exploited e.g. in quantum state swapping protocols, while the incoherent part leads to significant modifications of cold damping or amplification from the single-mode situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two limiting cases, the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure

    Slow light with integrated gain and large pulse delay

    Full text link
    We demonstrate slow and stored light in Rb vapor with a combination of desirable features: minimal loss and distortion of the pulse shape, and large fractional delay (> 10). This behavior is enabled by: (i) a group index that can be controllably varied during light pulse propagation; and (ii) controllable gain integrated into the medium to compensate for pulse loss. Any medium with the above two characteristics should be able to realize similarly high-performance slow light.Comment: 5 pages, 4 figures; abstract is shortened, some typo correcte

    Power dependence of pure spin current injection by quantum interference

    Get PDF
    We investigate the power dependence of pure spin current injection in GaAs bulk and quantum-well samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition pathways driven by two laser pulses. By keeping the relaxation time of the current unchanged, we are able to relate the spin separation to the injected average velocity. We find that the average velocity is determined by the relative strength of the two transitions in the same way as in classical interference. Based on this, we conclude that the density of injected pure spin current increases monotonically with the excitation laser intensities. The experimental results are consistent with theoretical calculations based on Fermi's golden rule.Comment: 6 pages, 4 figure

    Statistics of opinion domains of the majority-vote model on a square lattice

    Full text link
    The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size LL and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2L^2 whereas the size of the largest cluster grows with lnL2\ln L^2. The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model -- Axelrod's model -- we found that these opinion domains are unstable to the effect of a thermal-like noise

    Mean-field analysis of the majority-vote model broken-ergodicity steady state

    Get PDF
    We study analytically a variant of the one-dimensional majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. The individuals are fixed in the sites of a ring of size LL and can interact with their nearest neighbors only. The interesting feature of this model is that it exhibits an infinity of spatially heterogeneous absorbing configurations for LL \to \infty whose statistical properties we probe analytically using a mean-field framework based on the decomposition of the LL-site joint probability distribution into the nn-contiguous-site joint distributions, the so-called nn-site approximation. To describe the broken-ergodicity steady state of the model we solve analytically the mean-field dynamic equations for arbitrary time tt in the cases n=3 and 4. The asymptotic limit tt \to \infty reveals the mapping between the statistical properties of the random initial configurations and those of the final absorbing configurations. For the pair approximation (n=2n=2) we derive that mapping using a trick that avoids solving the full dynamics. Most remarkably, we find that the predictions of the 4-site approximation reduce to those of the 3-site in the case of expectations involving three contiguous sites. In addition, those expectations fit the Monte Carlo data perfectly and so we conjecture that they are in fact the exact expectations for the one-dimensional majority-vote model

    Self-aligned 0.12mm T-gate In.53Ga.47As/In.52Al.48As HEMT Technology Utilising a Non Annealed Ohmic Contact Strategy

    Get PDF
    An InGaAs/InAlAs based HEMT structure, lattice matched to an InP substrate, is presented in which drive current and transconductance has been optimized through a double-delta doping strategy. Together with an increase in channel carrier density, this allows the use of a non-annealed ohmic contact process. HEMT devices with 120 nm standard and self-aligned T-gates were fabricated using the non-annealed ohmic process. At DC, self-aligned and standard devices exhibited transconductances of up to 1480 and 1100 mS/mm respectively, while both demonstrated current densities in the range 800 mA/mm. At RF, a cutoff frequency f/sub T/ of 190 GHz was extracted for the self-aligned device. The DC characteristics of the standard devices were then calibrated and modelled using a compound semiconductor Monte Carlo device simulator. MC simulations provide insight into transport within the channel and illustrate benefits over a single delta doped structure

    Non-degenerate four-wave mixing in rubidium vapor: transient regime

    Full text link
    We investigate the transient response of the generated light from Four-Wave Mixing (FWM) in the diamond configuration using a step-down field excitation. The transients show fast decay times and oscillations that depend on the detunings and intensities of the fields. A simplified model taking into account the thermal motion of the atoms, propagation, absorption and dispersion effects shows qualitative agreement with the experimental observations with the energy levels in rubidium (5S1/2, 5P1/2, 5P3/2 and 6S1/2). The atomic polarization comes from all the contributions of different velocity classes of atoms in the ensemble modifying dramatically the total transient behavior of the light from FWM.Comment: 11 pages, 11 figures, to be published in Physical Review

    Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Get PDF
    We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting
    corecore