578 research outputs found
Heating mechanisms in radio frequency driven ultracold plasmas
Several mechanisms by which an external electromagnetic field influences the
temperature of a plasma are studied analytically and specialized to the system
of an ultracold plasma (UCP) driven by a uniform radio frequency (RF) field.
Heating through collisional absorption is reviewed and applied to UCPs.
Furthermore, it is shown that the RF field modifies the three body
recombination process by ionizing electrons from intermediate high-lying
Rydberg states and upshifting the continuum threshold, resulting in a
suppression of three body recombination. Heating through collisionless
absorption associated with the finite plasma size is calculated in detail,
revealing a temperature threshold below which collisionless absorption is
ineffective.Comment: 14 pages, 7 figure
Nonlocalized Generation of Correlated Photon Pairs in Degenerate Down-Conversion
The achievement of optimum conversion efficiency in conventional spontaneous parametric down- conversion requires consideration of quantum processes that entail multisite electrodynamic coupling, actively taking place within the conversion material. The physical mechanism, which operates through virtual photon propagation, provides for photon pairs to be emitted from spatially separated sites of photon interaction; occasionally pairs are produced in which each photon emerges from a different point in space. The extent of such nonlocalized generation is influenced by individual variations in both distance and phase correlation. Mathematical analysis of the global contributions from this mechanism provides a quantitative measure for a degree of positional uncertainty in the origin of down-converted emission
Tracking Changes in Bioavailable Fe Within High-Nitrate Low-Chlorophyll Oceanic Waters: A First Estimate Using a Heterotrophic Bacterial Bioreporter
It is conventional knowledge that heterotrophic bacteria play a key role in the biogeochemical cycling of oceanic carbon. However, only recently has their role in marine iron ( Fe) biogeochemical cycles been examined. Research during this past decade has demonstrated an inextricable link between Fe chemistry and the biota, as \u3e99% of Fe in marine systems is complexed to organic chelates of unknown but obviously biotic origin. Here we present a novel approach to assess and compare Fe bioavailability in low Fe HNLC waters using a bioluminescent bacterial reporter that quantitatively responds to the concentration of bioavailable Fe by producing light. Originally tested in freshwater environments, this study presents the first characterization of this halotolerant reporter organism in a defined seawater medium and then subsequently in marine surface waters. Laboratory characterizations demonstrate that this reporter displays a dose-dependent response to Fe availability in our defined marine medium. Field tests were performed during the 10-day mesoscale FeCycle experiment ( February 2003) in the Pacific sub-Antarctic high-nitrate low-chlorophyll region. Data from both biogeochemical measures and bioreporter assays are provided which describe how the bioreporter detected changes in Fe bioavailability that occurred during a natural shift in ambient dissolved Fe concentrations (similar to 40 pM). Our data explore the use of heterotrophic bioluminescent reporters as a comparable tool for marine ecosystems and demonstrate the potential utility of this tool in elucidating the relationship between Fe bioavailability and Fe chemistry in complex marine systems
Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives
The increased utilization of metrology resources and expanded application of its’ approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects
On the vertical-shear instability in astrophysical discs
We explore the linear stability of astrophysical discs exhibiting vertical shear, which arises when there is a radial variation in the temperature or entropy. Such discs are subject to a ‘vertical-shear instability’, which recent non-linear simulations have shown to drive hydrodynamic activity in the MRI-stable regions of protoplanetary discs. We first revisit locally isothermal discs using the quasi-global reduced model derived by Nelson et al. This analysis is then extended to global axisymmetric perturbations in a cylindrical domain. We also derive and study a reduced model describing discs with power-law radial entropy profiles (‘locally polytropic discs’), which are somewhat more realistic in that they possess physical (as opposed to numerical) surfaces. The fastest growing modes have very short wavelengths and are localized at the disc surfaces (if present), where the vertical shear is maximal. An additional class of modestly growing vertically global body modes is excited, corresponding to destabilized classical inertial waves (‘r modes’). We discuss the properties of both types of modes, and stress that those that grow fastest occur on the shortest available length-scales (determined either by the numerical grid or the physical viscous length). This ill-posedness makes simulations of the instability difficult to interpret. We end with some brief speculation on the non-linear saturation and resulting angular momentum transport
Power allocation strategies for distributed precoded multicell based systems
Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and diferente complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER), and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC) and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.Portuguese CADWIN - PTDC/ EEA TEL/099241/200
- …