861 research outputs found

    Modifying the Einstein Equations off the Constraint Hypersuface

    Get PDF
    A new technique is presented for modifying the Einstein evolution equations off the constraint hypersurface. With this approach the evolution equations for the constraints can be specified freely. The equations of motion for the gravitational field variables are modified by the addition of terms that are linear and nonlocal in the constraints. These terms are obtained from solutions of the linearized Einstein constraints.Comment: 4 pages, 1 figure, uses REVTe

    Explain To Me: Salience-Based Explainability for Synthetic Face Detection Models

    Full text link
    The performance of convolutional neural networks has continued to improve over the last decade. At the same time, as model complexity grows, it becomes increasingly more difficult to explain model decisions. Such explanations may be of critical importance for reliable operation of human-machine pairing setups, or for model selection when the "best" model among many equally-accurate models must be established. Saliency maps represent one popular way of explaining model decisions by highlighting image regions models deem important when making a prediction. However, examining salience maps at scale is not practical. In this paper, we propose five novel methods of leveraging model salience to explain a model behavior at scale. These methods ask: (a) what is the average entropy for a model's salience maps, (b) how does model salience change when fed out-of-set samples, (c) how closely does model salience follow geometrical transformations, (d) what is the stability of model salience across independent training runs, and (e) how does model salience react to salience-guided image degradations. To assess the proposed measures on a concrete and topical problem, we conducted a series of experiments for the task of synthetic face detection with two types of models: those trained traditionally with cross-entropy loss, and those guided by human salience when training to increase model generalizability. These two types of models are characterized by different, interpretable properties of their salience maps, which allows for the evaluation of the correctness of the proposed measures. We offer source codes for each measure along with this paper.Comment: 13 pages, 10 figure

    Applications of the wave packet method to resonant transmission and reflection gratings

    Full text link
    Scattering of femtosecond laser pulses on resonant transmission and reflection gratings made of dispersive (Drude metals) and dielectric materials is studied by a time-domain numerical algorithm for Maxwell's theory of linear passive (dispersive and absorbing) media. The algorithm is based on the Hamiltonian formalism in the framework of which Maxwell's equations for passive media are shown to be equivalent to the first-order equation, ∂Ψ/∂t=HΨ\partial \Psi/\partial t = {\cal H}\Psi, where H{\cal H} is a linear differential operator (Hamiltonian) acting on a multi-dimensional vector Ψ\Psi built of the electromagnetic inductions and auxiliary matter fields describing the medium response. The initial value problem is then solved by means of a modified time leapfrog method in combination with the Fourier pseudospectral method applied on a non-uniform grid that is constructed by a change of variables and designed to enhance the sampling efficiency near medium interfaces. The algorithm is shown to be highly accurate at relatively low computational costs. An excellent agreement with previous theoretical and experimental studies of the gratings is demonstrated by numerical simulations using our algorithm. In addition, our algorithm allows one to see real time dynamics of long leaving resonant excitations of electromagnetic fields in the gratings in the entire frequency range of the initial wide band wave packet as well as formation of the reflected and transmitted wave fronts.Comment: 23 pages; 8 figures in the png forma

    Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    Get PDF
    To provide for the well-being of crewmembers on future exploration missions, understanding how space station crewmembers handle the inherently stressful isolation and confinement during long-duration missions is important. A recent retrospective survey of previously flown astronauts found that the most commonly reported psychologically enriching aspects of spaceflight had to do with their Perceptions of Earth. Crewmembers onboard the International Space Station (ISS) photograph Earth through the station windows. Some of these photographs are in response to requests from scientists on the ground through the Crew Earth Observations (CEO) payload. Other photographs taken by crewmembers have not been in response to these formal requests. The automatically recorded data from the camera provides a dataset that can be used to test hypotheses about factors correlated with self-initiated crewmember photography. The present study used objective in-flight data to corroborate the previous questionnaire finding and to further investigate the nature of voluntary Earth-Observation activity. We examined the distribution of photographs with respect to time, crew, and subject matter. We also determined whether the frequency fluctuated in conjunction with major mission events such as vehicle dockings, and extra-vehicular activities (EVAs, or spacewalks), relative to the norm for the relevant crew. We also examined the influence of geographic and temporal patterns on frequency of Earth photography activities. We tested the hypotheses that there would be peak photography intensity over locations of personal interest, and on weekends. From December 2001 through October 2005 (Expeditions 4-11) crewmembers took 144,180 photographs of Earth with time and date automatically recorded by the camera. Of the time-stamped photographs, 84.5% were crew-initiated, and not in response to CEO requests. Preliminary analysis indicated some phasing in patterns of photography during the course of a mission (significant quadratic and trimodal models). There was also a small but significant increase in photo activity on the weekends. In contrast, fewer photos were taken during major station events and for a period of time immediately preceding those events. Data on photography patterns presented here represent a relatively objective group-level measure of Earth observing activities on ISS. Crew Earth Observations offers a self-initiated positive activity that may be important in salutogenesis (maintenance of well-being) of astronauts on long-duration missions. Consideration should be given to developing substitute activities for crewmembers in future exploration missions where there will not be the opportunity to look at Earth, such as on long-duration transits to Mars

    Multidomain Spectral Method for the Helically Reduced Wave Equation

    Get PDF
    We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspiral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkowskian gravitational field, with numerical simulations carried out via the "eigenspectral method." Despite its name, the eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.Comment: 57 pages, 11 figures, uses elsart.cls. Final version includes revisions based on referee reports and has two extra figure

    The Grizzly, March 2, 1984

    Get PDF
    Reagan Proposes to Cut Student Aid: 62% Ursinus Students Could Feel Bite • Tray Offenders Discussed • Students Elect New USGA Officers • Writing Seminar Features Alumni • Presidents Corner: Frats Move in Desirable Direction • Letters to the Editor: USGA Concerned With Student Apathy; Get in Gear • Board Elects Two New Members, Appoints Seven • Women\u27s Club Plans Events • WRUC Gets Technician • The Lantern Seeks Contributions • Cogger Heads State Study • Fall Registration Looms on Horizon • Learn While You Work • Sports Profile: Mo Gorman Excels • Basketball Team Wraps Up 83-84 Season • Bears Make Tracks • Grapplers Shine At MACs: Doyle Crowned 150lb Champ; Racich Named Coach of the Year • Doyle and Paolone Successful in MAC Competition • Satisfied with Nationalshttps://digitalcommons.ursinus.edu/grizzlynews/1114/thumbnail.jp

    The Grizzly, March 2, 1984

    Get PDF
    Reagan Proposes to Cut Student Aid: 62% Ursinus Students Could Feel Bite • Tray Offenders Discussed • Students Elect New USGA Officers • Writing Seminar Features Alumni • Presidents Corner: Frats Move in Desirable Direction • Letters to the Editor: USGA Concerned With Student Apathy; Get in Gear • Board Elects Two New Members, Appoints Seven • Women\u27s Club Plans Events • WRUC Gets Technician • The Lantern Seeks Contributions • Cogger Heads State Study • Fall Registration Looms on Horizon • Learn While You Work • Sports Profile: Mo Gorman Excels • Basketball Team Wraps Up 83-84 Season • Bears Make Tracks • Grapplers Shine At MACs: Doyle Crowned 150lb Champ; Racich Named Coach of the Year • Doyle and Paolone Successful in MAC Competition • Satisfied with Nationalshttps://digitalcommons.ursinus.edu/grizzlynews/1114/thumbnail.jp

    The geobiological nitrogen cycle : from microbes to the mantle

    Get PDF
    Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N2 is the dominant gas in Earth’s atmosphere, and nitrogen is stored in all of Earth’s geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth’s nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN2. We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth’s history: two in which atmospheric pN2 has changed unidirectionally (increased or decreased) over geologic time; and one in which pN2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities.Publisher PDFPeer reviewe

    Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP

    Get PDF
    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins

    Designed oligomers of cyanovirin-N show enhanced HIV neutralization

    Get PDF
    Cyanovirin-N (CV-N) is a small, cyanobacterial lectin that neutralizes many enveloped viruses, including human immunodeficiency virus type I (HIV-1). This antiviral activity is attributed to two homologous carbohydrate binding sites that specifically bind high mannose glycosylation present on envelope glycoproteins such as HIV-1 gp120. We created obligate CV-N oligomers to determine whether increasing the number of binding sites has an effect on viral neutralization. A tandem repeat of two CV-N molecules (CVN_2) increased HIV-1 neutralization activity by up to 18-fold compared to wild-type CV-N. In addition, the CVN_2 variants showed extensive cross-clade reactivity and were often more potent than broadly neutralizing anti-HIV antibodies. The improvement in activity and broad cross-strain HIV neutralization exhibited by these molecules holds promise for the future therapeutic utility of these and other engineered CV-N variants
    • …
    corecore