13 research outputs found

    Quadratic reheating

    Get PDF
    The reheating process for the inflationary scenario is investigated phenomenologically. The decay of the oscillating massive inflaton field into light bosons is modeled after an out of equilibrium mixture of interacting fluids within the framework of irreversible thermodynamics. Self-consistent, analytic results for the evolution of the main macroscopic magnitudes like temperature and particle number densities are obtained. The models for linear and quadratic decay rates are investigated in the quasiperfect regime. The linear model is shown to reheat very slowly while the quadratic one is shown to yield explosive particle and entropy production. The maximum reheating temperature is reached much faster and its magnitude is comparable with the inflaton mass.Comment: 21 pages, LaTeX 2.09, 4 figures. To be published in International Journal of Modern Physics

    Transport Theory of Massless Fields

    Get PDF
    Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of massless quantum fields. We analyse the scalar field models with quartic and cubic interaction terms. In the ϕ4\phi^4 model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the derivation of the transport equations strongly resembles that one of the massive fields, but the subset of diagrams which provide the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasiparticles is found, where, except the mean-field and collision terms, there are terms which are absent in the standard Boltzmann equation. The structure of these terms is discussed. In the massless ϕ3\phi^3 model the massive quasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not surprising since the ϕ3\phi^3 model is anyhow ill defined.Comment: 32 pages, no macro
    corecore