253 research outputs found
Negative parental responses to coming out and family functioning in a sample of lesbian and gay young adults
Parental responses to youths' coming out (CO) are crucial to the subsequent adjustment of children and family. The present study investigated the negative parental reaction to the disclosure of same-sex attraction and the differences between maternal
and paternal responses, as reported by their homosexual daughters and sons. Participants' perceptions of their parents' reactions (evaluated through the Perceived Parental Reactions Scale, PPRS), age at coming out, gender, parental political
orientation, and religiosity involvement, the family functioning (assessed through the Family Adaptability and Cohesion Evaluation Scales, FACES IV), were assessed in 164 Italian gay and lesbian young adults. Pearson correlation coefficients were calculated to assess the relation between family functioning and parental reaction to CO. The paired sample t-test was used to compare mothers and fathers' scores on the PPRS. Hierarchical multiple regression was conducted to analyze the relevance of each variable. No differences were found between mothers and fathers in their reaction to the disclosure. The analysis showed that a negative reaction to coming out was predicted by parents' right-wing political conservatism, strong religious beliefs, and
higher scores in the scales Rigid and Enmeshed. Findings confirm that a negative parental reaction is the result of poor family resources to face a stressful situation and a strong belief in traditional values. These results have important implications in both clinical and social fields
Recommended from our members
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4×10-48 cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3×10-43 cm2 (7.1×10-42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years
Simulating biosignatures from pre-oxygen photosynthesising life on TRAPPIST-1e
This is the author accepted manuscript. The final version is available on open access from Oxford University Press via the DOI in this recordData availability:
The model output used for this study will be made available following
this work’s acceptance for publicationIn order to assess observational evidence for potential atmospheric biosignatures on exoplanets, it will be essential to test whether
spectral fingerprints from multiple gases can be explained by abiotic or biotic-only processes. Here, we develop and apply a
coupled 1D atmosphere-ocean-ecosystem model to understand how primitive biospheres, which exploit abiotic sources of H2
,
CO and O2
, could influence the atmospheric composition of rocky terrestrial exoplanets. We apply this to the Earth at 3.8 Ga
and to TRAPPIST-1e. We focus on metabolisms that evolved before the evolution of oxygenic photosynthesis, which consume
H2 and CO and produce potentially detectable levels of CH4
. O2
-consuming metabolisms are also considered for TRAPPIST-1e,
as abiotic O2 production is predicted on M-dwarf orbiting planets. We show that these biospheres can lead to high levels of
surface O2
(approximately 1–5 %) as a result of CO consumption, which could allow high O2
scenarios, by removing the main
loss mechanisms of atomic oxygen. Increasing stratospheric temperatures, which increases atmospheric OH can reduce the
likelihood of such a state forming. O2
-consuming metabolisms could also lower O2
levels to around 10 ppm and support a
productive biosphere at low reductant inputs. Using predicted transmission spectral features from CH4
, CO, O2
/O3 and CO2
across the hypothesis space for tectonic reductant input, we show that biotically-produced CH4 may only be detectable at high
reductant inputs. CO is also likely to be a dominant feature in transmission spectra for planets orbiting M-dwarfs, which could
reduce the confidence in any potential biosignature observations linked to these biospheres.Science and Technology Facilities Council (STFC)UK Research and InnovationJohn Templeton FoundationLeverhulme TrustHill Family ScholarshipInstitute of Physic
Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ϵ4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design
Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts
Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state
A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design
Background
Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy.
Methods/design
Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period.
Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and muscle homogenate from muscle biopsies obtained from muscle vastus lateralis.
Discussion
The findings from the PEPC trial will provide new knowledge on the effects of high-load strength training on clinical and muscle cellular outcomes in prostate cancer patients during androgen deprivation therapy.
Trial registration
ClinicalTrials.gov:
NCT0065822
The chlorosome: a prototype for efficient light harvesting in photosynthesis
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate
Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts
The protein serine/threonine kinase Akt, also known as protein kinase B (PKB), is arguably the most important signalling nexus in the cell. Akt integrates a plethora of extracellular signals to generate diverse outcomes, including proliferation, motility, growth, glucose homeostasis, survival, and cell death. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is the second most frequently mutated pathway in cancer, after p53, and mutations in components of this pathway are found in around 70% of breast cancers. Thus, understanding how Akt relays input signals to downstream effectors is critically important for the design of therapeutic strategies to combat breast cancer. In this review, we will discuss the various signals upstream of Akt that impact on its activity, how Akt integrates these signals and modulates the activity of downstream targets to control mammary gland development, and how mutations in components of the pathway result in breast cancer
- …