238 research outputs found

    Abelian Surfaces over totally real fields are Potentially Modular

    Get PDF
    We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse--Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces A over Q with End_C(A)=Z. We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.Comment: 285 page

    Cuspidal cohomology classes for GL_n(Z)

    Full text link
    We prove the existence of a cuspidal automorphic representation π\pi for GL79/QGL_{79}/\mathbf{Q} of level one and weight zero. We construct π\pi using symmetric power functoriality and a change of weight theorem, using Galois deformation theory. As a corollary, we construct the first known cuspidal cohomology classes in H∗(GLn(Z),C)H^*(GL_{n}(\mathbf{Z}),\mathbf{C}) for any n>1n > 1.Comment: Expository changes, updated to include a variation on the original construction using locally irreducible mod p representations. 10 page

    Higher Hida and Coleman theories on the modular curve

    Full text link
    We construct Hida and Coleman theories for the degree 0 and 1 cohomology of automorphic line bundles on the modular curve and we define a p-adic duality pairing between the theories in degree 0 and 1

    Compatible systems of Galois representations associated to the exceptional group E6

    Full text link
    We construct, over any CM field, compatible systems of l-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all l) algebraic monodromy groups equal to the exceptional group of type E6.Comment: bibliography fixed in new version. comments welcom

    Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation

    Get PDF
    SummaryThe metabolic demands and synthetic capacity of the lactating mammary gland exceed that of any other tissue, thereby providing a useful paradigm for understanding the developmental regulation of cellular metabolism. By evaluating mice bearing targeted deletions in Akt1 or Akt2, we demonstrate that Akt1 is specifically required for lactating mice to synthesize sufficient quantities of milk to support their offspring. Whereas cellular proliferation, differentiation, and apoptosis are unaffected, loss of Akt1 disrupts the coordinate regulation of metabolic pathways that normally occurs at the onset of lactation. This results in a failure to upregulate glucose uptake, Glut1 surface localization, lipid synthesis, and multiple lipogenic enzymes, as well as a failure to downregulate lipid catabolic enzymes. These findings demonstrate that Akt1 is required in an isoform-specific manner for orchestrating many of the developmental changes in cellular metabolism that occur at the onset of lactation and establish a role for Akt1 in glucose metabolism

    Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses

    Get PDF
    Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys[superscript 358]. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys[superscript 358] to Ser[superscript 358] oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.National Institutes of Health (U.S.) (R03MH085679)National Institutes of Health (U.S.) (1P30CA147882)Burroughs Wellcome FundDamon Runyon Cancer Research FoundationSmith Family FoundationStarr Cancer Consortiu

    Comparison of magnetic resonance imaging and computed tomography for breast target volume delineation in prone and supine positions

    Get PDF
    Purpose To\ua0determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results Imaging modality did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57\ua0(95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52\ua0(95% CI 0.48-0.56) for MRI supine, 0.56\ua0(95% CI 0.53-0.59) for CT prone and 0.55\ua0(95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41\ua0(95% CI 0.36-0.46) for supine and 0.38\ua0(0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images
    • …
    corecore