4,958 research outputs found

    A Numerical Approach to Coulomb Gauge QCD

    Get PDF
    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wavefunction using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wavefunctional

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include

    Neutron Resonance Spectroscopy of 106Pd, and 108Pd from 20–2000 eV

    Full text link
    Parity nonconserving asymmetries have been measured in p-wave resonances of 106Pd and 108Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture γ-ray yields were measured for En=20–2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in 106Pd and 32 resonances in 108Pd were studied. The resonance parameters for 106Pd are new for all except one resonance. In 108Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied

    Parity Nonconservation in 106Pd and 108Pd Neutron Resonances

    Full text link
    Parity nonconservation (PNC) has been studied in the neutron p-wave resonances of 106Pd and 108Pd in the energy range of 20 to 2000 eV. Longitudinal asymmetries in p-wave capture cross sections are measured using longitudinally polarized neutrons incident on ∼20-g metal-powder targets at LANSCE. A CsI γ-ray detector array measures capture cross section asymmetries as a function of neutron energy which is determined by the neutron time-of-flight method. A total of 21 p-wave resonances in 106Pd and 21 p-wave resonances in 108Pd were studied. One statistically significant PNC effect was observed in106Pd, and no effects were observed in 108Pd. For 106Pd a weak spreading width of Γw=34-28+47×10-7 eV was obtained. For 108Pd an upper limit on the weak spreading width of Γw\u3c12×10-7 eV was determined at the 68% confidence level

    Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave resonance of 139La^{139}La

    Get PDF
    The parity nonconserving spin rotation of neutrons in the 0.734-eV p-wave resonance of 139La^{139}La was measured with the neutron transmission method. Two optically polarized 3He^3He cells were used before and behind a a 5-cm long 139La^{139}La target as a polarizer and an analyzer of neutron spin. The rotation angle was carefully measured by flipping the direction of 3He^3He polarization in the polarizer in sequence. The peak-to-peak value of the spin rotation was found to be (7.4±1.1)×103 (7.4 \pm 1.1) \times 10^{-3} rad/cm which was consistent with the previous experiments. But the result was statisticallly improved. The s-p mixing model gives the weak matrix element as xW=(1.71±0.25)xW = (1.71 \pm 0.25) meV. The value agrees well with the one deduced from the parity-nonconserving longitudinal asymmetry in the same resonance

    Parity Violation in Neutron Resonances in 107,109Ag

    Full text link
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three

    Full text link
    In this paper we construct the Wilson short distance operator product expansion for the gluon, quark and ghost propagators in QCD, including operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi and m^3. We compute analytically the coefficient functions of these operators at three loops for all three propagators in the general covariant gauge. Our results, taken in the Landau gauge, should help to improve the accuracy of extracting the vacuum expectation values of these operators from lattice simulation of the QCD propagators.Comment: 20 pages, no figure

    P,T-Violating Nuclear Matrix Elements in the One-Meson Exchange Approximation

    Full text link
    Expressions for the P,T-violating NN potentials are derived for π\pi, ρ\rho and ω\omega exchange. The nuclear matrix elements for ρ\rho and ω\omega exchange are shown to be greatly suppressed, so that, under the assumption of comparable coupling constants, π\pi exchange would dominate by two orders of magnitude. The ratio of P,T-violating to P-violating matrix elements is found to remain approximately constant across the nuclear mass table, thus establishing the proportionality between time-reversal-violation and parity-violation matrix elements. The calculated values of this ratio suggest a need to obtain an accuracy of order 5×104 5 \times 10^{-4} for the ratio of the PT-violating to P-violating asymmetries in neutron transmission experiments in order to improve on the present limits on the isovector pion coupling constant.Comment: 17 pages, LaTeX, no figure

    Parity Violation in 232Th Neutron Resonances Above 250 eV

    Get PDF
    The analysis of parity nonconservation (PNC) measurements performed on 232Th by the TRIPLE Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten statistically significant parity violations have the same sign. However, at higher energies PNC effects of both signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target. Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymmetry, parity violations were observed and the cross section differences for positive and negative neutron helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron strength functions for the J=1/2 and J=3/2 states were extracted: S1/21=(1.68±0.61)×10-4 and S3/21=(0.75±0.18)×10-4. The data provide constraints on the properties of local doorway states proposed to explain the PNC sign effect in thorium
    corecore