8,661 research outputs found
Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells
We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC
Scaling behavior of quark propagator in full QCD
We study the scaling behavior of the quark propagator on two lattices with
similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in
order to test whether we are close to the continuum limit for these lattices.
We use configurations generated with an improved staggered (``Asqtad'') action
by the MILC collaboration. The calculations are performed on
lattices with lattice spacing fm and on lattices
with lattice spacing fm. We calculate the quark mass function,
, and the wave-function renormalization function, , for a
variety of bare quark masses. Comparing the behavior of these functions on the
two sets of lattices we find that both and show little
sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure
An analytical study of resonant transport of Bose-Einstein condensates
We study the stationary nonlinear Schr\"odinger equation, or Gross-Pitaevskii
equation, for a one--dimensional finite square well potential. By neglecting
the mean--field interaction outside the potential well it is possible to
discuss the transport properties of the system analytically in terms of ingoing
and outgoing waves. Resonances and bound states are obtained analytically. The
transmitted flux shows a bistable behaviour. Novel crossing scenarios of
eigenstates similar to beak--to--beak structures are observed for a repulsive
mean-field interaction. It is proven that resonances transform to bound states
due to an attractive nonlinearity and vice versa for a repulsive nonlinearity,
and the critical nonlinearity for the transformation is calculated
analytically. The bound state wavefunctions of the system satisfy an
oscillation theorem as in the case of linear quantum mechanics. Furthermore,
the implications of the eigenstates on the dymamics of the system are
discussed.Comment: RevTeX4, 16 pages, 19 figure
Rapid Variability of Gamma-Ray Blazars: A Model for MKN 421
The extremely rapid burst of TeV photons from Mkn 421 (15 May 1996) can be
reconciled with the standard properties of a relativistic gamma-ray emitting
jet (bulk Lorentz factor 10; size \10^{17} cm) if one assumes that
the electrons are accelerated in conical shocks with both opening and viewing
angles . If the injection time and the cooling time are much
less than the photon crossing time, an emission ring moves along the jet and
leads to the appearance of a very rapid flare, in satisfactory agreement with
the observations.Comment: 12 pages, 3 figures, uses aasms4.sty, to appear in ApJ Letter
Casimir-Polder force density between an atom and a conducting wall
In this paper we calculate the Casimir-Polder force density (force per unit
area acting on the elements of the surface) on a metallic plate placed in front
of a neutral atom. To obtain the force density we use the quantum operator
associated to the electromagnetic stress tensor. We explicitly show that the
integral of this force density over the plate reproduces the total force acting
on the plate. This result shows that, although the force is obtained as a sum
of surface element-atom contributions, the stress-tensor method includes also
nonadditive components of Casimir-Polder forces in the evaluation of the force
acting on a macroscopic object.Comment: 5 page
Quantitative estimates of relationships between geomagnetic activity and equatorial spread-F as determined by TID occurrence levels
Using a world-wide set of stations for 15 years, quantitative estimates of changes to equatorial spread-F (ESF) occurrence rates obtained from ionogram scalings, have been determined for a range of geomagnetic activity (GA) levels, as well as for four different levels of solar activity. Average occurrence rates were used as a reference. The percentage changes vary significantly depending on these subdivisions. For example for very high GA the inverse association is recorded by a change of -33% for R-z greater than or equal to 150, and -10% for R-z < 50. Using data for 9 years for the equatorial station, Huancayo, these measurements of ESF which indicate the presence of TIDs, have also been investigated by somewhat similar analyses. Additional parameters were used which involved the local times of GA, with the ESF being examined separately for occurrence pre-midnight (PM) and after-midnight (AM). Again the negative changes were most pronounced for high GA in R-z-max years (-21%). This result is for PM ESF for GA at a local time of 1700. There were increased ESF levels (+31%) for AM ESF in R-z-min years for high GA around 2300 LT. This additional knowledge of the influence of GA on ESF occurrence involving not only percentage changes, but these values for a range of parameter levels, may be useful if ever short-term forecasts are needed. There is some discussion on comparisons which can be made between ESF results obtained by coherent scatter from incoherent-scatter equipment and those obtained by ionosondes
- …