7,859 research outputs found

    The effect of freezing on cement mortar and concrete

    Get PDF

    Executive Authority for National Security Surveillance

    Get PDF

    A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation of Antarctica, and implications for phytoprovincialism in the high southern latitudes

    Get PDF
    The thickest uppermost Cretaceous to lowermost Paleogene (Maastrichtian to Danian) sedimentary succession in the world is exposed on southern Seymour Island (65° South) in the James Ross Basin, Antarctic Peninsula. This fossiliferous shallow marine sequence, which spans the Cretaceous–Paleogene boundary, has allowed a high-resolution analysis of well-preserved marine palynomorphs. Previous correlation of Cretaceous–Paleogene marine palynomorph assemblages in the south polar region relied on dinoflagellate cyst biozonations from New Zealand and southern Australia. The age model of the southern Seymour Island succession is refined and placed within the stratigraphical context of the mid to high southern palaeolatitudes. Quantitative palynological analysis of a new 1102 m continuous stratigraphical section comprising the uppermost Snow Hill Island Formation and the López de Bertodano Formation (Marambio Group) across southern Seymour Island was undertaken. We propose the first formal late Maastrichtian to early Danian dinoflagellate cyst zonation scheme for the Antarctic based on this exceptional succession. Two new late Maastrichtian zones, including three subzones, and one new early Danian zone are defined. The oldest beds correlate well with the late Maastrichtian of New Zealand. In a wider context, a new South Polar Province based on Maastrichtian to Danian dinoflagellate cysts is proposed, which excludes most southern South American marine palynofloras. This interpretation is supported by models of ocean currents around Antarctica and implies an unrestricted oceanic connection across Antarctica between southern South America and the Tasman Sea

    Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization

    Full text link
    Preliminary results are presented from a simple, single-antenna experiment designed to measure the all-sky radio spectrum between 100 and 200 MHz. The system used an internal comparison-switching scheme to reduce non-smooth instrumental contaminants in the measured spectrum to 75 mK. From the observations, we place an initial upper limit of 450 mK on the relative brightness temperature of the redshifted 21 cm contribution to the spectrum due to neutral hydrogen in the intergalactic medium (IGM) during the epoch of reionization, assuming a rapid transition to a fully ionized IGM at a redshift of 8. With refinement, this technique should be able to distinguish between slow and fast reionization scenarios. To constrain the duration of reionization to dz > 2, the systematic residuals in the measured spectrum must be reduced to 3 mK.Comment: Submitted to ApJ. 9 pages including 6 figure
    • …
    corecore